
Application Layer
Web/HTTP
Prof. Anja Feldmann, Ph.D.

(Based on slide deck of Computer Networking, 7th ed., Jim Kurose and Keith Ross.)

Application Layer: Web/HTTP

Application Layer

Goals
• Conceptual, implementation aspects

• Communication paradigms
• Client-server and Peer-to-peer

• Transport-layer service models

• Learn protocols through examples
• HTTP

• DNS

• eMail

Data Networks 2

Application Layer: Web/HTTP

Not that Web!

Image credits: Pixabay, www.pexels.com

Data Networks 3

Application Layer: Web/HTTP

Web and HTTP: An overview

• Web page consists of objects

• Objects?
• E.g., HTML file, JPEG image, audio file, …

• Web page consists of base HTML-file which includes several
referenced objects

• Each object is addressable by a URL
• E.g., https://www.mpi-inf.mpg.de/inet/

Data Networks 4

Application Layer: Web/HTTP

Web and HTTP: An overview

Data Networks 5

Application Layer: Web/HTTP

Web and HTTP: An overview
Web page

Data Networks 5

Application Layer: Web/HTTP

Web and HTTP: An overview
HTML

(source)

Data Networks 5

Application Layer: Web/HTTP

Web and HTTP: An overview

Image

Data Networks 6

Application Layer: Web/HTTP

Web and HTTP: An overview

Video

Data Networks 6

Application Layer: Web/HTTP

Web and HTTP: An overview

JavaScript

Data Networks 6

Application Layer: Web/HTTP

Web and HTTP: An overview

Base HTML

Data Networks 6

Application Layer: Web/HTTP

Web and HTTP: An overview

URL

Data Networks 6

Application Layer: Web/HTTP

The HTTP Protocol

• HTTP: HyperText Transfer Protocol
• Application layer protocol for the Web

Data Networks 7

Application Layer: Web/HTTP

The HTTP Protocol

• Client-Server model
• Client

• Browser that requests, receives,
“displays” Web objects

• Server
• Server sends objects in response to

requests

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP re
sponse

Data Networks 8

Application Layer: Web/HTTP

The HTTP Protocol

• Client-Server model
• Client

• Browser that requests, receives,
“displays” Web objects

• Server
• Server sends objects in response to

requests

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP re
sponse

Also used as part of many other
application layer protocol

Data Networks 8

Application Layer: Web/HTTP

HTTP Development Timeline
• Mar. 1990 CERN labs document proposing Web

• Jan. 1992 HTTP/0.9 specification

• Dec. 1992 Proposal to add MIME to HTTP

• Feb. 1993 UDI (Universal Document Identifier) Network

• Mar. 1993 HTTP/1.0 first draft

• Jun. 1993 HTML (1.0 Specification)

• Oct. 1993 URL specification

• Nov. 1993 HTTP/1.0 second draft

• Mar. 1994 URI in WWW

• May. 1996 HTTP/1.0 Informational, RFC 1945

• Jan. 1997 HTTP/1.1 Proposed Standard, RFC 2068

• Jun. 1999 HTTP/1.1 Draft Standard, RFC 2616

• 2001 HTTP/1.1 Formal Standard

• …ongoing HTTP/2 Drafts and Standardization

Data Networks 9

Application Layer: Web/HTTP

The HTTP Protocol: Basics

• Uses TCP as transport service

• Client

• E.g., Web Browser
• Initiates TCP connection (creates socket)

to server (on port 80)

• Server

• Accepts TCP connection from client

• HTTP messages exchanged between

client and server

• TCP connection closed after exchange

• HTTP is “stateless”
• Server maintains no

information about past
client requests

Data Networks 10

Application Layer: Web/HTTP

The HTTP Protocol: Basics

• Uses TCP as transport service

• Client

• E.g., Web Browser
• Initiates TCP connection (creates socket)

to server (on port 80)

• Server

• Accepts TCP connection from client

• HTTP messages exchanged between

client and server

• TCP connection closed after exchange

• HTTP is “stateless”
• Server maintains no

information about past
client requests

Protocols that maintain “state” are complex!

• Past history (state) must be maintained
• If server/client crashes, their views of “state”

may be inconsistent, must be reconciled

Data Networks 10

Application Layer: Web/HTTP

HTTP Messages

Two types: Request and response

Data Networks 11

Application Layer: Web/HTTP

HTTP Messages: Request

• HTTP Request:
• ASCII (human-readable format)

GET /index.html HTTP/1.1\r\n
Host: www.google.com\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

Data Networks 12

Application Layer: Web/HTTP

HTTP Messages: Request

• HTTP Request:
• ASCII (human-readable format)

GET /index.html HTTP/1.1\r\n
Host: www.google.com\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

Request line
(GET, POST, HEAD, …)

Data Networks 13

Application Layer: Web/HTTP

HTTP Messages: Request

• HTTP Request:
• ASCII (human-readable format)

GET /index.html HTTP/1.1\r\n
Host: www.google.com\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

Header lines
(key-value pairs)

Data Networks 14

Application Layer: Web/HTTP

HTTP Messages: Request

• HTTP Request:
• ASCII (human-readable format)

GET /index.html HTTP/1.1\r\n
Host: www.google.com\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

\r: Carriage return
\n: Line feed

Data Networks 15

Application Layer: Web/HTTP

HTTP Messages: Request

• HTTP Request:
• ASCII (human-readable format)

GET /index.html HTTP/1.1\r\n
Host: www.google.com\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

End of header lines

Data Networks 16

Application Layer: Web/HTTP

HTTP Messages: Request

• HTTP Request:
• ASCII (human-readable format)

GET /index.html HTTP/1.1\r\n
Host: www.google.com\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

* Check out the online interactive exercises for more examples:
http://gaia.cs.umass.edu/kurose_ross/interactive/

Data Networks 17

Application Layer: Web/HTTP

HTTP Messages: Format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Data Networks 18

Application Layer: Web/HTTP

HTTP Methods

HTTP/1.0:

• GET

• POST

• HEAD
• Only the meta data

• Asks server to leave
requested object out of
response

HTTP/1.1:

• GET, POST, HEAD

• PUT
• Uploads file in entity body

to path specified in URL field

• DELETE
• Deletes file specified in the

URL field

Data Networks 19

Application Layer: Web/HTTP

HTTP Messages: Response

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
<data> ...

Data Networks 20

Application Layer: Web/HTTP

HTTP Messages: Response

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
<data> ...

Status line

Data Networks 21

Application Layer: Web/HTTP

HTTP Messages: Response

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
<data> ...

Status line

Protocol

Data Networks 22

Application Layer: Web/HTTP

HTTP Messages: Response

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
<data> ...

Status line

Status code

Data Networks 23

Application Layer: Web/HTTP

HTTP Messages: Response

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
<data> ...

Status line

Status phrase

Data Networks 24

Application Layer: Web/HTTP

HTTP Messages: Response

Header lines
(key-value pairs)

Data Networks 25

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
<data> ...

Application Layer: Web/HTTP

HTTP Messages: Response

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
<data> ...

Data
e.g., requested HTML
file

Data Networks 26

Application Layer: Web/HTTP

HTTP Response: Status codes

• 200 OK
• Request succeeded

• 301 Moved Permanently
• Requested object moved, new location specified later in the message

• 400 Bad Request
• Request message not understood by server

• 404 Not Found
• Requested document not found on this server

• 505 HTTP Version Not Supported

Data Networks 27

Application Layer: Web/HTTP

Trying out HTTP client-side
1. Telnet to your favorite Web server:

Opens TCP connection to port 80 (default
HTTP server port) at gaia.cs.umass.edu.
anything typed in will be sent to port 80 at
gaia.cs.umass.edu

telnet gaia.cs.umass.edu 80

2. Type in a GET HTTP request:

GET /kurose_ross/interactive/index.php HTTP/1.1
Host: gaia.cs.umass.edu

By typing this in (hit carriage return
twice), you send this minimal (but
complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!
 (or use Wireshark to look at captured HTTP request/response)

Data Networks 28

Application Layer: Web/HTTP

HTTP Connections

Non-persistent HTTP
• At most one object sent over

TCP connection

• Connection then closed

• Downloading multiple
objects required multiple
connections

Persistent HTTP
• Multiple objects can be sent

over single TCP connection

Data Networks 29

Application Layer: Web/HTTP

Non-persistent HTTP
Suppose user enters the following URL

www.someSchool.edu/someDepartment/home.index

(contains text, references to 10 JPEG images)
1a. HTTP client initiates TCP connection
to HTTP server (process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP request
message (containing URL) into TCP
connection socket. Message
indicates that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting for TCP
connection at port 80. “accepts”
connection, notifying client

3. HTTP server receives request message,
forms response message containing
requested object, and sends message
into its socket

time

Data Networks 30

http://www.someschool.edu/someDepartment/home.index

Application Layer: Web/HTTP

Non-persistent HTTP (continued)

time

5. HTTP client receives response
message containing html file,
displays html. Parsing html file, finds
10 referenced jpeg objects

6. Steps 1-5 repeated for each of the
10 jpeg objects

4. HTTP server closes TCP connection.

Data Networks 31

Application Layer: Web/HTTP

Non-persistent HTTP: Response time

• Round-trip time (RTT)
• Time for a (small) packet to travel

from client to server and back

• HTTP response time:
• One RTT to initiate TCP connection
• One RTT for HTTP request and first

few bytes of HTTP response to return
• File transmission time

• HTTP Response time:
• 2*RTT+ file transmission time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Data Networks 32

Application Layer: Web/HTTP

Persistent HTTP

Non-persistent HTTP:
• 2 RTTs per object

• OS overhead for each TCP
connection

• Browsers often open parallel
TCP connections to fetch
referenced objects

Persistent HTTP:
• Server leaves connection

open after sending response

• Subsequent HTTP messages
between same client/server
sent over open connection

• Client sends requests as
soon as possible

• ~ 1 RTT per object

Data Networks 33

Application Layer: Web/HTTP

Web and HTTP: An overview

• Web page consists of objects

• Objects?
• E.g., HTML file, JPEG image, audio file, …

• Web page consists of base HTML-file which includes several
referenced objects

• Each object is addressable by a URL
• E.g., https://www.mpi-inf.mpg.de/inet/

Data Networks 34

