

Application Layer DNS

Prof. Anja Feldmann, Ph.D. Dr. Oliver Gasser

(Based on slide deck of Computer Networking, 7th ed., Jim Kurose and Keith Ross.)

Domain Name System (DNS)

- People have many identifiers
 - SSN, name, Passport #
- Internet hosts, routers
 - IP address (32/128 bit) used for addressing datagrams
 - "Name", e.g., mpi-inf.mpg.de used by humans

How to map between IP addresses and name?

• Domain Name System (DNS) RFC1034/RFC1035, RFC3007,...

Domain Name System (DNS)

• Distributed database

- Implemented in hierarchy of many name servers
- Application-layer protocol
 - Host, routers, name servers communicate to **resolve** names (address/name translation)
- Core Internet function implemented as application-layer protocol
- Complexity at network's "edge"

Domain Name System (DNS)

Why not centralize DNS?

- Single point of failure
- Traffic volume
- Distant centralized database
- Maintenance

Does not scale!

DNS: Hierarchical Naming Tree

No name server has all name-to-IP address mappings

Client wants to get the IP address for www.amazon.com \rightarrow first approximation:

1. Client's resolver queries root name server to find com name server

- 2. Client's resolver queries com name server to find amazon.com name server
- **3.** Client's resolver queries **amazon.com** name server to get IP address for **www.amazon.com**

Data Networks

Application Layer: DNS

DNS: Name Servers vs. Resolvers

Name server

- Authoritative for a certain number of names
- Responds to DNS queries issued by a resolver
- Types: Root name server, TLD name server, SLD name server,...

Resolver

- Issues DNS queries to a name server to resolve a name to an IP address
- Types: stub resolver, forwarding resolver, recursive resolver

Authoritative Name Servers

• Root name servers

• Top-level domain servers

• Second-level domain servers

Root Name Servers

- Authoritative for **root zone** (.)
- Contain name server mappings for all top-level domains
- Bootstrapping problem: How does a resolver find the root servers?
 - Root hints file
 - Directly shipped with resolver software

Different Root Name Servers

- 13 logical root name "servers" worldwide
 - [a-m].root-servers.net
- Each logical "server" replicated many times (currently 1379 instances)

Application Layer: DNS

Top-Level Domain (TLD) Servers

- Responsible for top-level domains, i.e. domains just below the root zone
- Country code TLDs (ccTLDs): .de, .us, .in, .pk, .fr, .uk,...
- Generic TLDs (gTLDs): .com, .org, .net, .int, .edu, .gov, .mil
- "New gTLDs"
 - Launched in 2013
 - E.g.: .dev, .top, .online, .google, .nyc, .berlin, .saarland, ...
 - More than 1300 new gTLDs
- Infrastructure TLD: .arpa
- Different TLD name servers are maintained by different institutions

Second-Level Domain (SLD),... Name Servers

- Responsible for **second-level domains**, i.e. domains just below the top-level domain zone
- E.g. example.com, amazon.com, uni-saarland.de,...
- What about co.uk?
 - Technically speaking a second-level domain
 - But: Treated by software as a top-level domain
 - co.uk is an **effective TLD** (eTLD)
- Different SLD name servers are maintained by different institutions

Do not strictly belong to the DNS hierarchy!

- Stub resolver
- Forwarding resolver
- Recursive resolver
- All resolvers can make use of caching of DNS answers

Stub Resolver

- "Dumb" resolver software running on the local machine
- Sends DNS queries to configured resolver
 - /etc/resolv.conf or "default name server" setting
- Returns answers to querying software

Forwarding Resolver

- Running e.g. on your home router or in infrastructure of large DNS services
- Acts as a **proxy**: receives queries (e.g. from a stub resolver), forwards queries to a recursive resolver
- Configured in resolver software
- Returns answers to querying resolver

Recursive Resolver

- Each ISP (residential ISP, company, university) has one
- Does the actual heavy lifting:
 - Receives queries from forwarding or stub resolver
 - Recursively queries root, TLD, SLD,... name servers
- Returns answer to querying resolver

Data Networks

17

DNS is a distributed database for storing Resource Records (RR)

RR format: (name, value, type, ttl)

Type=CNAME

for alias

Type=A

name is hostname value is IP address

Type=NS

name is domain (e.g., foo.com) value is IP address of authoritative name server for this domain

Type=MX for mail **Type=AAAA** for IPv6

A Record: Example

;; OPT PSEUDOSECTION:

; EDNS: version: o, flags:; udp: 4096

;; QUESTION SECTION:

;mpi-inf.mpg.de. IN A

;; ANSWER SECTION:

mpi-inf.mpg.de. 7201 IN A 139.19.86.161

;; Query time: 2722 msec

;; SERVER: 172.27.216.42#53(172.27.216.42)

;; WHEN: Thu Oct 25 15:47:03 CEST 2018

Data Networks

Internationalized Domain Names (IDNs)

- Allows use of **non-ASCII characters** in domain names
- E.g. umlauts, Chinese, Arabic, diacritics,...
- Encoded as ASCII using Punycode (xn-encoding)
 - Makes use of generalized variable-length integers
 - bücher.example \rightarrow xn--bcher-kva.example
- Homograph attacks
 - amazon.de vs. amazon.de
 - Hint: Cyrillic "a" on right domain

Mapping IP address to Names

Special domains: in-addr.arpa. / ip6.arpa.

Data Networks

Application Layer: DNS

DNS Name Resolution Iterative Example

• Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

Iterative query:

- Contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

DNS Name Resolution Recursive Example

• Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

Recursive query:

- Puts burden of name resolution on contacted name server
- Heavy load at upper levels of hierarchy?

- Host at cis.poly.edu wants IP address for gaia.cs.umass.edu
- Mix of iterative and recursive queries:
- Requesting host sends a recursive query
- Local resolver uses iterative queries

Data Networks

Application Layer: DNS

gaia.cs.umass.edu

DNS: Caching and Updating Records

- Once (any) resolver learns mapping, it caches it
 - Cached entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - Thus root name servers not often visited
- Cached entries may be out-of-date (best effort name-to-address translation!)
 - If name host changes IP address, may not be known Internet-wide until all TTLs expire
- Update/notify mechanisms proposed IETF standard
 - RFC 2136

Attacking the DNS

Bombard root servers with traffic

- Not successful to date
- Traffic filtering
- Resolvers cache IPs of TLD servers, allowing root server bypass

Redirect attacks

- Man-in-the-middle
- Intercept queries
- DNS poisoning
- Send bogus replies to DNS server, which caches them

Bombard TLD servers

• Potentially more dangerous

Exploit DNS for DDoS

- Send queries with spoofed source address: target IP
- Use DNS amplification

• DNS

- Distributed, hierarchical database for names
- Authoritative name servers
 - Store mapping between name and address
 - Answer queries from resolvers
- Resolvers
 - Query authoritative name servers to learn mapping

