

Homework 10

State, RSVP, Indirection and MQTT

Get the Slides here

link

Data Networks

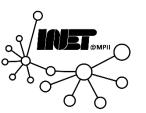
State, RSVP, Indirection, MQTT

2

Homework Overview

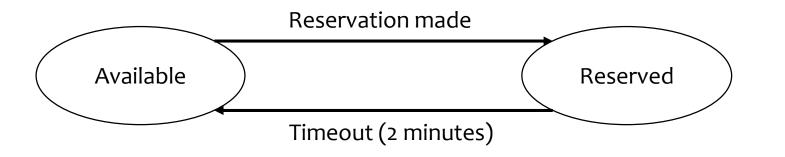
- Soft State and Hard State
- RSVP
- Indirection and virtualization
- MQTT

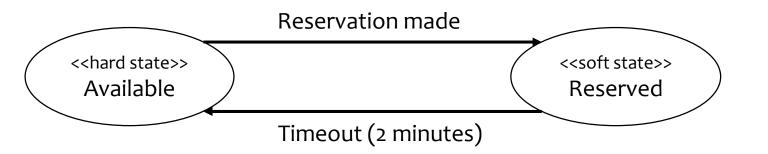
Question 1 (Soft State / Hard State)



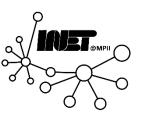
Scooters can be rented by using a smartphone app, called "SaarScooters". The managers decided that they need an advantage with regard to the other scooter rental services. This is why customers are only charged while they ride a scooter. Reserving a scooter is necessary before renting it, but customers don't have to pay for the time while the scooter is reserved. However, reservations don't last forever, as that wouldn't be profitable. So, customers can reserve a scooter only for a limited amount of time: 2 minutes. If the scooter is not claimed during that time, the reservation expires and the scooter becomes again available for all the customers. If the customer starts using the scooter, the reservation process is suspended. After the scooter is returned, it becomes immediately available for all the other customers.

Provide a state diagram that shows only the states where a scooter is available or reserved (i.e., 2 states). Indicate for each of the two states whether it is a soft state or a hard state and why.

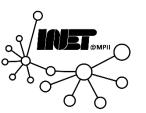

Provide a state diagram that shows only the states where a scooter is available or reserved (i.e., 2 states). Indicate for each of the two states whether it is a soft state or a hard state and why.



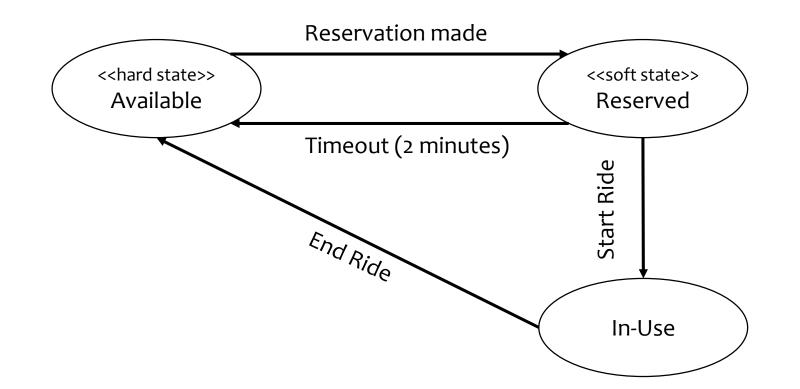
Scooters can be rented by using a smartphone app, called "SaarScooters". The managers decided that they need an advantage with regard to the other scooter rental services. This is why customers are only charged while they ride a scooter. Reserving a scooter is necessary before renting it, but customers don't have to pay for the time while the scooter is reserved. However, reservations don't last forever, as that wouldn't be profitable. So, customers can reserve a scooter only for a limited amount of time: 2 minutes. If the scooter is not claimed during that time, the reservation expires and the scooter becomes again available for all the customers. If the customer starts using the scooter, the reservation process is suspended. After the scooter is returned, it becomes immediately available for all the other customers.

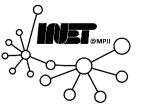


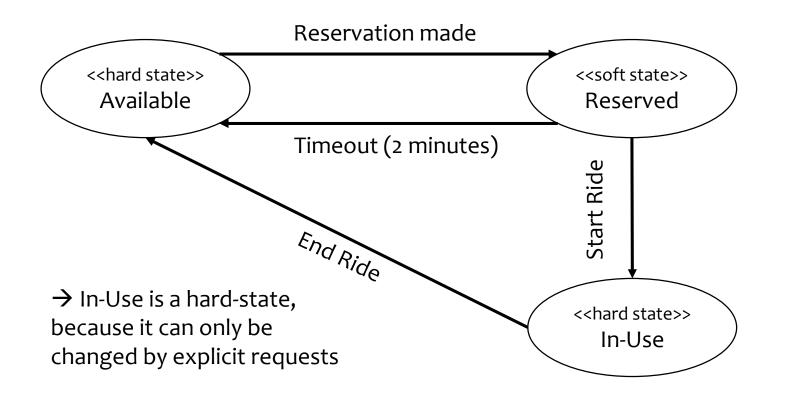
→ Available is a hard-state, because it can only be changed by a reservation request → Reserved is a soft-state, because it has a timeout

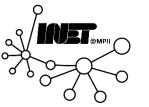


Augment your state diagram with the information about the current usage of a scooter. That is, add a third state where the scooter is used. Indicate whether this third state is a soft state or a hard state and why.


Augment your state diagram with the information about the current usage of a scooter. That is, add a third state where the scooter is used. Indicate whether this third state is a soft state or a hard state and why.






Scooters can be rented by using a smartphone app, called "SaarScooters". The managers decided that they need an advantage with regard to the other scooter rental services. This is why customers are only charged while they ride a scooter. Reserving a scooter is necessary before renting it, but customers don't have to pay for the time while the scooter is reserved. However, reservations don't last forever, as that wouldn't be profitable. So, customers can reserve a scooter only for a limited amount of time: 2 minutes. If the scooter is not claimed during that time, the reservation expires and the scooter becomes again available for all the customers. If the customer starts using the scooter, the reservation process is suspended. After the scooter is returned, it becomes immediately available for all the other customers.



Your manager says they would have used either only soft or only hard states for making the diagram simpler.


Use your expertise to argue (3-5 Sentences) about the pros and cons (if there are any) of using only soft or only hard states.

Your manager says they would have used either only soft or only hard states for making the diagram simpler.


Use your expertise to argue (3-5 Sentences) about the pros and cons (if there are any) of using only soft or only hard states.

Your manager says they would have used either only soft or only hard states for making the diagram simpler.

Use your expertise to argue (3-5 Sentences) about the pros and cons (if there are any) of using only soft or only hard states.

Question 1 (c)

Cons: Only Soft-States

Cons: Only Hard-States

Pros: Only Soft-States

Pros: Only Hard-States

Cons: Only Soft-States

- "In-Use" needs a timeout with periodic refreshes

Pros: Only Soft-States

- No stuck states (robustness)
- Easier error recovery
- Easier to reason/analyse

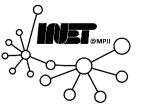
Cons: Only Hard-States

Pros: Only Hard-States

Cons: Only Soft-States

- "In-Use" needs a timeout with periodic refreshes

Pros: Only Soft-States


- No stuck states (robustness)
- Easier error recovery
- Easier to reason/analyse

Cons: Only Hard-States

- Reservations would need to be canceled explicitly
- Potential of stuck states

Pros: Only Hard-States

- Less client to network signaling
- Less message overhead
- Potentially greater consistency

Cons: Only Soft-States

- "In-Use" needs a timeout with periodic refreshes

Pros: Only Soft-States

- No stuck states (robustness)
- Easier error recovery
- Easier to reason/analyse

Cons: Only Hard-States

- Reservations would need to be canceled explicitly
- Potential of stuck states

Pros: Only Hard-States

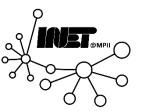
- Less client to network signaling
- Less message overhead
- Potentially greater consistency


→ Variants with only soft or only hard states would make usage more inconvenient for the user or provisioning more costly for the provider

Question 1d)

Angered by your last answer (because you were right and they were not), your manager says that they are still losing money due to "SaarScooters" free reservations. Your manager says you should do your job and fix the issue, by changing or adding only *one* rule in the rental process.

Question 1d)


Angered by your last answer (because you were right and they were not), your manager says that they are still losing money due to "SaarScooters" free reservations. Your manager says you should do your job and fix the issue, by changing or adding only *one* rule in the rental process.

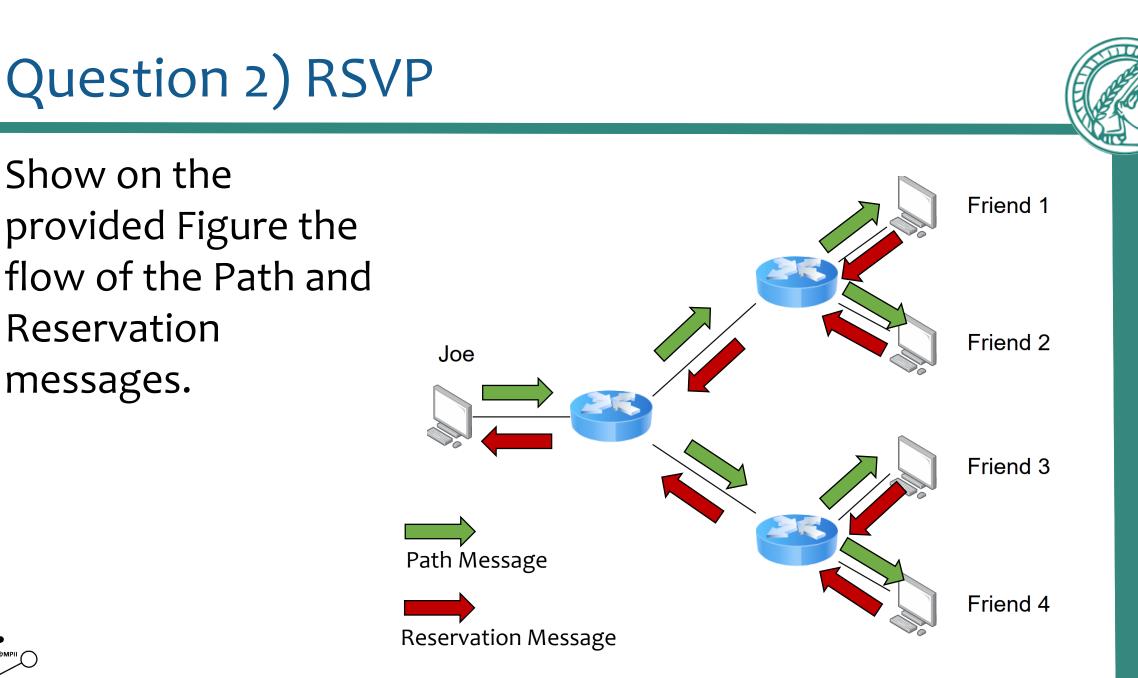
- \Rightarrow Customers pay for using but not for blocking resources
- \Rightarrow Make reservations have a cost

Questions?

Data Networks

State, RSVP, Indirection, MQTT

Joe is streaming his Minecraft playthrough for his friends. He doesn't know, but the streaming service uses RSVP. Show on the provided Figure the flow of the Path and Reservation messages.

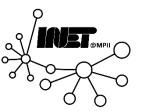


provided Figure the flow of the Path and

messages.

Reservation

Show on the



Data Networks

State, RSVP, Indirection, MQTT

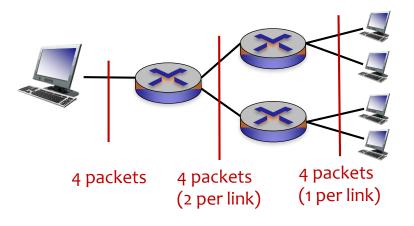

Questions?

Data Networks

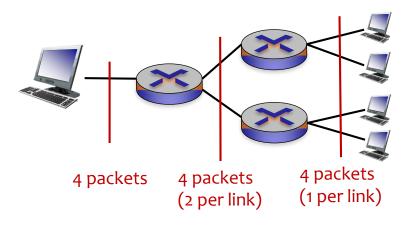
State, RSVP, Indirection, MQTT

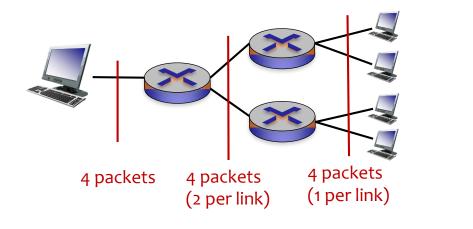

In Unicasting, we have one sender and one receiver. Whereas in multicasting, there is one source and multiple destinations.

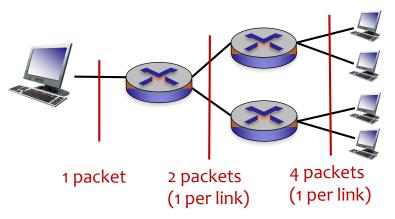

In Unicasting, we have one sender and one receiver. Whereas in multicasting, there is one source and multiple destinations.


In Unicasting, we have one sender and one receiver. Whereas in multicasting, there is one source and multiple destinations.

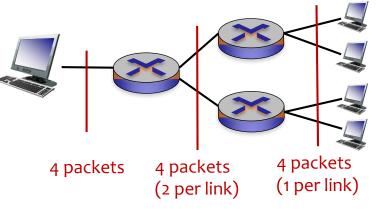
In Unicasting, we have one sender and one receiver. Whereas in multicasting, there is one source and multiple destinations.

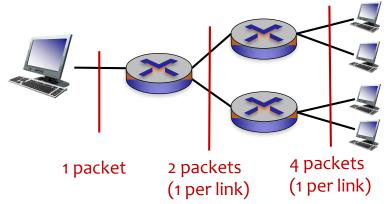

Multiple Unicasts	Multicast	


Data Networks


Multiple Unicasts	Multicast
- Source has to transmit packet once per receiver	
- Does not require group management	
- More traffic	
 Generating many packets at the source, might introduce delay between first and last packet 	

Multiple Unicasts	Multicast
- Source has to transmit packet once per receiver	
- Does not require group management	
- More traffic	
 Generating many packets at the source, might introduce delay between first and last packet 	
Application: Sending E-Mail to multiple receivers	

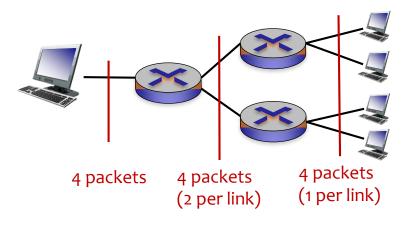


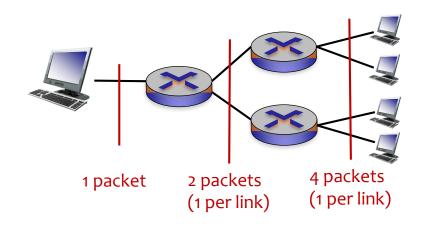


م٩

Nei

Multiple Unicasts	Multicast
- Source has to transmit packet once per receiver	Source only transmits one packetPacket is replicated in the routers
- Does not require group management	- Requires a multicast group
- More traffic	- Less traffic because duplication on demand
- Generating many packets at the source, might introduce delay between first and last packet	
Application: Sending E-Mail to multiple receivers	

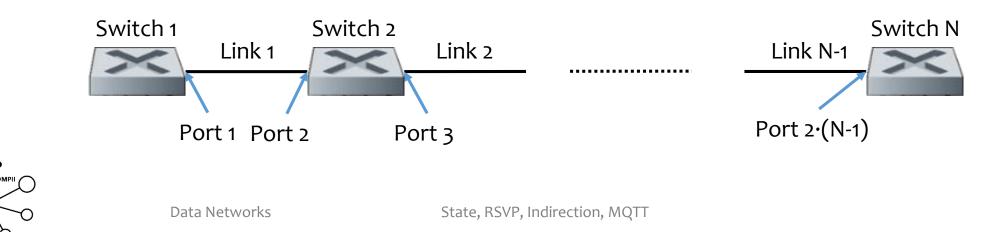




Nþ

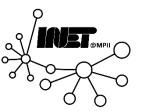
م٩

Multiple Unicasts	Multicast
- Source has to transmit packet once per receiver	Source only transmits one packetPacket is replicated in the routers
- Does not require group management	- Requires a multicast group
- More traffic	- Less traffic because duplication on demand
 Generating many packets at the source, might introduce delay between first and last packet 	
Application: Sending E-Mail to multiple receivers	Application: Video Conferencing



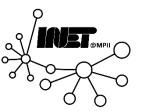
Nþ

م٩


Suppose that N switches, supporting the 802.11Q tagging protocol, are to be connected via a trunking protocol. How many VLANs can be configured on each switch? What is the minimum number of ports needed to connect all the switches if we have configured K VLANs on them and why?

- \rightarrow 12-bit VLAN ID field (2¹²=4096 Values)
- \rightarrow N-1 Trunk links to connect all N switches
- →2·(N-1) port

Questions?


Data Networks

State, RSVP, Indirection, MQTT

Code Demo

Data Networks

State, RSVP, Indirection, MQTT