

# Homework 9

Multimedia & VoIP, Datacenter, SDN



#### Homework Overview

- Multimedia Applications & VoIP
- Datacenter Networks
- Software Defined Network (SDN)





## **Question 1: Multimedia Applications**



Please provide a short answer for the questions below.







Multimedia applications can be classified into three categories. Name and briefly describe each category in 2-3 sentences. State how much they have tolerance to delay, jitter, and packet loss.





Multimedia applications can be classified into three categories. Name and briefly describe each category in 2-3 sentences. State how much they have tolerance to delay, jitter, and packet loss.





#### **Streaming Stored Audio and Video**





**Streaming Stored Audio and Video** 

- prerecorded video/audio
- placed on the server
- requested on demand by the users





**Streaming Stored Audio and Video** 

- prerecorded video/audio
- placed on the server
- requested on demand by the users
- not sensitive to Delay / jitter / packet loss





#### **Conversational Voice- and Video-over-IP**





**Conversational Voice- and Video-over-IP** 

- •real-time
- similar to the traditional circuit-switched telephone service





**Conversational Voice- and Video-over-IP** 

- real-time
- similar to the traditional circuit-switched telephone service
- sensitive to delay and jitter
- occasional loss only causes occasional glitches in audio/video playback





#### Streaming Live Audio and Video









Streaming Live Audio and Video

- similar to traditional broadcast radio/television
- a live radio/television transmission to the users







**Streaming Live Audio and Video** 

- similar to traditional broadcast radio/television
- a live radio/television transmission to the users
- sensitive to delay and jitter
- occasional loss only causes occasional glitches in audio/video playback





What is the client playout delay? Explain how it can affect the users' experience in two ways.





What is the client playout delay? Explain how it can affect the users' experience in two ways.





What is the client playout delay? Explain how it can affect the users' experience in two ways.

#### Answers:

A certain amount of time which client buffered the received data till it renders and plays it.





What is the client playout delay? Explain how it can affect the users' experience in two ways.

Answers:

Too large: users experience a large delay at any new start





What is the client playout delay? Explain how it can affect the users' experience in two ways.

Answers:

**Too large:** users experience a large delay at any new start **Too small:** users might experience multiple refreshing (lags) during rendering.







# What is the motivation behind using FEC instead of transport/application layer reliability in VoIP traffic?







# What is the motivation behind using FEC instead of transport/application layer reliability in VoIP traffic?







What is the motivation behind using FEC instead of transport/application layer reliability in VoIP traffic?

Answers:

 Reliable delivery of frames is of little use if retransmissions take too long to keep the conversation going





What is the motivation behind using FEC instead of transport/application layer reliability in VoIP traffic?

Answers:

- Reliable delivery of frames is of little use if retransmissions take too long to keep the conversation going
- FEC-like mechanisms which **provide recovery without retransmission** appear to be better-suited





## Questions?



Data Networks

Multimedia & VoIP, Datacenter, SDN

Question 2(a): Video Streaming

Why are video frames categorized into three types (I-Frames, P-Frames, and B-Frames)?





Question 2(a): Video Streaming



Why are video frames categorized into three types (I-Frames, P-Frames, and B-Frames)?



Question 2(a): Video Streaming

Why are video frames categorized into three types (I-Frames, P-Frames, and B-Frames)?

#### Answer:

Video is a flow of frames, in order to compress the data of a video we can divide frames into three categories as I,P and B frame.





# What is the difference between these three types of frames?







# What is the difference between these three types of frames?



Question 2(b): Video Streaming



What is the difference between these three types of frames?

Answers:

I frames are the most important ones that do not rely on any other frame they are sent periodically.



Question 2(b): Video Streaming



What is the difference between these three types of frames?

Answers:

I frames are the most important ones that do not rely on any other frame they are sent periodically.

**P frames** are predicted frames. These frames contain the changes from proceeding I-frames.



Question 2(b): Video Streaming



What is the difference between these three types of frames?

Answers:

I frames are the most important ones that do not rely on any other frame they are sent periodically.

**P frames** are predicted frames. These frames contain the changes from proceeding I-frames.

**B frames** are bidirectional frame, these frames are relative to the past and future I/P frame.





## Questions?



Data Networks

Multimedia & VoIP, Datacenter, SDN

## Question 3: Hands-on lab for VoIP

You need Wireshark1 traffic analyzer and a real traffic trace (.pcap files) in order to solve following questions. Do not use any other tools.

In this assignment we set up a lab with a PBX2 and two clients. Clients (Bob and Alice) are able to use VoIP service and PBX is the service provider.

Wireshark provides a set of analysis tools for VoIP traffic, most of them are in the statistics and telephony menus in the main window of the Wireshark. Familiarize yourself with these tools, you will need them to solve all of the following questions.

Important note: Your answers must include description for your reasoning and how did you reach to the answers. In cases you use display filters for a question, provide a snapshot of your filter in your answer sheet.

The VoIP lab topology is as Figure 1. We have traces from two vantage points. One is on Bob side which is the Bob.pcap3 file and the other one is the PBX.pcap3.



## Question 3: Hands-on lab for VoIP

You need Wireshark1 traffic analyzer and a real traffic trace (.pcap files) in order to solve following questions. Do not use any other tools.

In this assignment we set up a lab with a PBX2 and two clients. Clients (Bob and Alice) are able to use VoIP service and PBX is the service provider.

Wireshark provides a set of analysis tools for VoIP traffic, most of them are in the statistics and telephony menus in the main window of the Wireshark. Familiarize yourself with these tools, you will need them to solve all of the following questions.

Important note: Your answers must include description for your reasoning and how did you reach to the answers. In cases you use display filters for a question, provide a snapshot of your filter in your answer sheet.

The VoIP lab topology is as Figure 1. We have traces from two vantage points. One is on Bob side which is the Bob.pcap3 file and the other one is the PBX.pcap3.



# Question 3: Hands-on lab for VoIP Alice Bob /OIP 'OIP PBX

#### Figure 1: VoIP lab topology.



Multimedia & VoIP, Datacenter, SDN




Based on trace and wireshark analysis fill Table 1 and put a summary on how you identified which IP belongs to which node: (use PBX.pcap file)

|            | PBX | Alice | Bob |
|------------|-----|-------|-----|
| IP Address |     |       |     |

Table 1: IP Addresses







Based on trace and wireshark analysis fill Table 1 and put a summary on how you identified which IP belongs to which node: (use PBX.pcap file)

|            | PBX | Alice | Bob |
|------------|-----|-------|-----|
| IP Address |     |       |     |

Table 1: IP Addresses





| No. | Time       | Source        | Destination   | Protocol | Length  Info                                        |
|-----|------------|---------------|---------------|----------|-----------------------------------------------------|
|     | 1 0.000000 | 192.168.0.236 | 192.168.0.133 | SIP      | 563 Request: REGISTER sip:192.168.0.133 (1 binding) |
|     | 2 0.000302 | 192.168.0.133 | 192.168.0.236 | SIP      | 617 Status: 401 Unauthorized                        |
|     | 3 0.000568 | 192.168.0.236 | 192.168.0.133 | SIP      | 724 Request: REGISTER sip:192.168.0.133 (1 binding) |
|     | 4 0.000843 | 192.168.0.133 | 192.168.0.236 | SIP      | 639 Status: 200 OK (REGISTER) (1 binding)           |
|     | 5 2.800046 | 192.168.0.18  | 192.168.0.133 | SIP      | 529 Request: REGISTER sip:192.168.0.133 (1 binding) |
|     | 6 2.800227 | 192.168.0.133 | 192.168.0.18  | SIP      | 558 Status: 401 Unauthorized                        |
|     | 7 2.819991 | 192.168.0.18  | 192.168.0.133 | SIP      | 693 Request: REGISTER sip:192.168.0.133 (1 binding) |

| Internet Protocol Version 4, Src: 192.168.0.236, Dst: 192.168.0.133 |
|---------------------------------------------------------------------|
| User Datagram Protocol, Src Port: 51028, Dst Port: 5060             |
| Session Initiation Protocol (REGISTER)                              |
| Request-Line: REGISTER sip:192.168.0.133 SIP/2.0                    |
| ~ Message Header                                                    |

#### For the 1st packet:

|        | Message Header                                                                                 |
|--------|------------------------------------------------------------------------------------------------|
|        | Via: SIP/2.0/UDP 192.168.0.236:51028; rport; branch=z9hG4bKPjdf56f9bccf1b                      |
|        | Max-Forward <u>s: 70</u>                                                                       |
| icket: | From: <sip:alice@192.168.0.133>;tag=141594470f0048689de668a682f67042</sip:alice@192.168.0.133> |
|        | > To: <sip:alice@192.168.0.133></sip:alice@192.168.0.133>                                      |
|        | Call-ID: 0ad934a3d32d452bbb70b412bee5f040                                                      |
|        | [Generated Call-ID: 0ad934a3d32d452bbb70b412bee5f040]                                          |
|        | > CSeq: 35068 REGISTER                                                                         |
|        | User-Agent: MicroSIP/3.20.5                                                                    |
|        | <pre>&gt; Contact: <sip:alice@192.168.0.236:51028:ob></sip:alice@192.168.0.236:51028:ob></pre> |





| No. | Time       | Source        | Destination   | Protocol | Length  Info                                        |
|-----|------------|---------------|---------------|----------|-----------------------------------------------------|
|     | 1 0.000000 | 192.168.0.236 | 192.168.0.133 | SIP      | 563 Request: REGISTER sip:192.168.0.133 (1 binding) |
|     | 2 0.000302 | 192.168.0.133 | 192.168.0.236 | SIP      | 617 Status: 401 Unauthorized                        |
|     | 3 0.000568 | 192.168.0.236 | 192.168.0.133 | SIP      | 724 Request: REGISTER sip:192.168.0.133 (1 binding) |
|     | 4 0.000843 | 192.168.0.133 | 192.168.0.236 | SIP      | 639 Status: 200 OK (REGISTER) (1 binding)           |
|     | 5 2.800046 | 192.168.0.18  | 192.168.0.133 | SIP      | 529 Request: REGISTER sip:192.168.0.133 (1 binding) |
|     | 6 2.800227 | 192.168.0.133 | 192.168.0.18  | SIP      | 558 Status: 401 Unauthorized                        |
|     | 7 2.819991 | 192.168.0.18  | 192.168.0.133 | SIP      | 693 Request: REGISTER sip:192.168.0.133 (1 binding) |

| Internet Protocol Version 4, Src: 192.168.0.236, Dst: 192.168.0.133 |
|---------------------------------------------------------------------|
| User Datagram Protocol, Src Port: 51028, Dst Port: 5060             |
| Session Initiation Protocol (REGISTER)                              |
| Request-Line: REGISTER sip:192.168.0.133 SIP/2.0                    |
| Message Header                                                      |

#### For t

|                 | ~ Message Header                                                                                               |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                 | Via: SIP/2.0/UDP 192.168.0.236:51028; rport; branch=z9hG4bKPjdf56f9bccf1k                                      |  |  |  |  |
|                 | Max-Forwards: 70                                                                                               |  |  |  |  |
| che 1st packet: | <pre>&gt; From: <sip:alice@192.168.0.133>;tag=141594470f0048689de668a682f67042</sip:alice@192.168.0.133></pre> |  |  |  |  |
| 1               | <pre>&gt; To: <sip:alice@192.168.0.133></sip:alice@192.168.0.133></pre>                                        |  |  |  |  |
|                 | Call-ID: 0ad934a3d32d452bbb70b412bee5f040                                                                      |  |  |  |  |
|                 | [Generated Call-ID: 0ad934a3d32d452bbb70b412bee5f040]                                                          |  |  |  |  |
|                 | CSeq: 35068 REGISTER                                                                                           |  |  |  |  |
|                 | User-Agent: MicroSIP/3.20.5                                                                                    |  |  |  |  |
|                 | <pre>Contact: <sip:alice@192.168.0.236:51028:ob></sip:alice@192.168.0.236:51028:ob></pre>                      |  |  |  |  |



409



| No. | Time       | Source        | Destination   | Protocol | Length  Info                                        |
|-----|------------|---------------|---------------|----------|-----------------------------------------------------|
|     | 1 0.000000 | 192.168.0.236 | 192.168.0.133 | SIP      | 563 Request: REGISTER sip:192.168.0.133 (1 binding) |
|     | 2 0.000302 | 192.168.0.133 | 192.168.0.236 | SIP      | 617 Status: 401 Unauthorized                        |
|     | 3 0.000568 | 192.168.0.236 | 192.168.0.133 | SIP      | 724 Request: REGISTER sip:192.168.0.133 (1 binding) |
|     | 4 0.000843 | 192.168.0.133 | 192.168.0.236 | SIP      | 639 Status: 200 OK (REGISTER) (1 binding)           |
|     | 5 2.800046 | 192.168.0.18  | 192.168.0.133 | SIP      | 529 Request: REGISTER sip:192.168.0.133 (1 binding) |
|     | 6 2.800227 | 192.168.0.133 | 192.168.0.18  | SIP      | 558 Status: 401 Unauthorized                        |
|     | 7 2.819991 | 192.168.0.18  | 192.168.0.133 | SIP      | 693 Request: REGISTER sip:192.168.0.133 (1 binding) |

|                     | <ul> <li>Internet Protocol Version 4, Src: 192.168.0.18, Dst: 192.168.0.133</li> <li>User Datagram Protocol, Src Port: 5060, Dst Port: 5060</li> <li>Session Initiation Protocol (REGISTER)</li> </ul> |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Request-Line: REGISTER sip:192.168.0.133 SIP/2.0                                                                                                                                                       |
|                     | ✓ Message Header                                                                                                                                                                                       |
|                     | > Via: SIP/2.0/UDP 192.168.0.18;branch=z9hG4bK232cc8c1-82cca759                                                                                                                                        |
|                     | <pre>→ From: sip:bob@192.168.0.133;tag=f961d7f7-10a453ee</pre>                                                                                                                                         |
| For the 5th packet: | > To: sip:bob@192.168.0.133                                                                                                                                                                            |
| for the junpacket.  | Call-ID: 8a75dc04-d11a3a9e-a6c70db1-820eaeb4                                                                                                                                                           |
|                     | [Generated Call-ID: 8a75dc04-d11a3a9e-a6c70db1-820eaeb4]                                                                                                                                               |
|                     | > CSeq: 278 REGISTER                                                                                                                                                                                   |
|                     | <pre>&gt; Contact: <sip:bob@192.168.0.18;x-reg=e6c9f60392c33cd9>;expires=600</sip:bob@192.168.0.18;x-reg=e6c9f60392c33cd9></pre>                                                                       |
|                     | Content-Length: 0                                                                                                                                                                                      |
|                     | Expires: 600                                                                                                                                                                                           |
|                     | User-Agent: Sipnetic/1.0.37 Android                                                                                                                                                                    |
|                     |                                                                                                                                                                                                        |





| No. | Time       | Source        | Destination   | Protocol | Length  Info                                        |
|-----|------------|---------------|---------------|----------|-----------------------------------------------------|
|     | 10.000000  | 192.168.0.236 | 192.168.0.133 | SIP      | 563 Request: REGISTER sip:192.168.0.133 (1 binding) |
|     | 2 0.000302 | 192.168.0.133 | 192.168.0.236 | SIP      | 617 Status: 401 Unauthorized                        |
|     | 3 0.000568 | 192.168.0.236 | 192.168.0.133 | SIP      | 724 Request: REGISTER sip:192.168.0.133 (1 binding) |
|     | 4 0.000843 | 192.168.0.133 | 192.168.0.236 | SIP      | 639 Status: 200 OK (REGISTER) (1 binding)           |
|     | 5 2.800046 | 192.168.0.18  | 192.168.0.133 | SIP      | 529 Request: REGISTER sip:192.168.0.133 (1 binding) |
|     | 6 2.800227 | 192.168.0.133 | 192.168.0.18  | SIP      | 558 Status: 401 Unauthorized                        |
|     | 7 2.819991 | 192.168.0.18  | 192.168.0.133 | SIP      | 693 Request: REGISTER sip:192.168.0.133 (1 binding) |

Answers:

|            | PBX           | Alice         | Bob          |
|------------|---------------|---------------|--------------|
| IP Address | 192.168.0.133 | 192.168.0.236 | 192.168.0.18 |

IP Addresses







# Why do Alice and Bob send register requests twice? What is the difference between them? (use PBX.pcap file)







# Why do Alice and Bob send register requests twice? What is the difference between them? (use PBX.pcap file)





Why do Alice and Bob send register requests twice? What is the difference between them? (use PBX.pcap file)

Answers:

The first register is replied by 401 Unauthorized from the server side, this packet contains WWW-Authenticate header.





Why do Alice and Bob send register requests twice? What is the difference between them? (use PBX.pcap file)

Answers:

The first register is replied by 401 Unauthorized from the server side, this packet contains WWW-Authenticate header.

By this header, in the second register, by this header the user can decide about encryption method of its communications password.





Why do Alice and Bob send register requests twice? What is the difference between them? (use PBX.pcap file)

To make the following graph: Statistics - >Flow Graph

192.168.0.236









| Call Reference | Caller (Name - Number 700x) | Calee (Name - Number 700x) | Who hangs up the call | Duration (seconds) |
|----------------|-----------------------------|----------------------------|-----------------------|--------------------|
|                |                             |                            |                       |                    |

Table 2: Calls list







| Call Reference | Caller (Name - Number 700x) | Calee (Name - Number 700x) | Who hangs up the call | Duration (seconds) |
|----------------|-----------------------------|----------------------------|-----------------------|--------------------|
|                |                             |                            |                       |                    |

Table 2: Calls list







Apply the filter "sip.Method == "BYE"

| sip.Me     | p.Method == "BYE" |               |               |          |                                                              |  |  |  |  |
|------------|-------------------|---------------|---------------|----------|--------------------------------------------------------------|--|--|--|--|
| <b>)</b> . | Time              | Source        | Destination   | Protocol | Length  Info                                                 |  |  |  |  |
|            | 210 68.336003     | 192.168.0.18  | 192.168.0.133 | SIP      | 551 Request: BYE sip <mark>:7001</mark> @192.168.0.133:5060  |  |  |  |  |
|            | 215 68.337916     | 192.168.0.133 | 192.168.0.236 | SIP      | 500 Request: BYE sip: <u>alic</u> e@192.168.0.236:51028;ob   |  |  |  |  |
|            | 646 185.498786    | 192.168.0.236 | 192.168.0.133 | SIP      | 420 Request: BYE sip: <mark>7002</mark> @192.168.0.133:5060  |  |  |  |  |
|            | 652 185.520100    | 192.168.0.133 | 192.168.0.18  | SIP      | 509 Request: BYE sip:bob@192.168.0.18;x-reg=E6C9F60392C33CD9 |  |  |  |  |
|            | 1115 264.641059   | 192.168.0.18  | 192.168.0.133 | SIP      | 551 Request: BYE sip: <mark>7001</mark> @192.168.0.133:5060  |  |  |  |  |
|            | 1120 264.643473   | 192.168.0.133 | 192.168.0.236 | SIP      | 500 Request: BYE sip:alice@192.168.0.236:50366;ob            |  |  |  |  |







Telephony -> VoIP Calls

| Start Time \land | Stop Time  | Initial Speaker | From                                                      | То                                                                                          | Protocol | Duration | Packets | State     | Comments           |
|------------------|------------|-----------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------|----------|----------|---------|-----------|--------------------|
| 27.250257        | 68.336352  | 192.168.0.18    | si <mark>r</mark> :bob@ <mark>192.168.0.133</mark>        | sip:7001@192.168.0.133                                                                      | SIP      | 00:00:41 | 12      | COMPLETED | INVITE 401 200     |
| 27.293800        | 68.338184  | 192.168.0.133   | "bob" <sip:7002@192.168.0.133></sip:7002@192.168.0.133>   | <sip:alice@192.168.0.236:51028;ob></sip:alice@192.168.0.236:51028;ob>                       | SIP      | 00:00:41 | 13      | COMPLETED | INVITE 200 200 200 |
| 141.472914       | 185.499258 | 192.168.0.236   | <sip alice@192.168.0.133=""></sip>                        | <sip:7002@192.168.0.133></sip:7002@192.168.0.133>                                           | SIP      | 00:00:44 | 12      | COMPLETED | INVITE 401 200     |
| 141.477552       | 185.538902 | 192.168.0.133   | "alice" <sip:7001@192.168.0.133></sip:7001@192.168.0.133> | <sip:bob@192.168.0.18;x-reg=e6c9f60392c33cd9></sip:bob@192.168.0.18;x-reg=e6c9f60392c33cd9> | SIP      | 00:00:44 | 12      | COMPLETED | INVITE 200 200 200 |
| 223.073683       | 264.641276 | 192.168.0.18    | sip bob@192.168.0.133                                     | sip:7001@192.168.0.133                                                                      | SIP      | 00:00:41 | 12      | COMPLETED | INVITE 401 200     |
| 223.118813       | 264.643698 | 192.168.0.133   | "bob" <sip:7002@192.168.0.133></sip:7002@192.168.0.133>   | <sip:alice@192.168.0.236:50366;ob></sip:alice@192.168.0.236:50366;ob>                       | SIP      | 00:00:41 | 13      | COMPLETED | INVITE 200 200 200 |







Answers:

| Call Reference | Caller (Name - Number 700x) | Calee      | Who hangs the call | Duration (s) |
|----------------|-----------------------------|------------|--------------------|--------------|
| 1              | Bob 7002                    | Alice 7001 | Bob                | 41           |
| 2              | Alice 7001                  | Bob 7002   | Alice              | 44           |
| 3              | Bob 7002                    | Alice 7001 | Bob                | 41           |

#### Calls list





### Questions?



Data Networks

Multimedia & VoIP, Datacenter, SDN



A new Datacenter topology design, Jellyfish, is to construct a random graph as its topology at the top-of-rack (ToR) switch layer, as Figure 2a. Each ToR switch has some number k of ports, of which it uses r to connect to other ToR switches, and uses the remaining k-r ports for servers. In this question, we assume there are two data centers with the same number of equipment (switches and servers). One uses Fat tree topology and the other one uses Jellyfish topology.





A new Datacenter topology design, Jellyfish, is to construct a random graph as its topology at the top-of-rack (ToR) switch layer, as Figure 2a. Each ToR switch has some number k of ports, of which it uses r to connect to other ToR switches, and uses the remaining k-r ports for servers. In this question, we assume there are two data centers with the same number of equipment (switches and servers). One uses Fat tree topology and the other one uses Jellyfish topology.



#### **Question 4: Datacenter**



Figure 2: Datacenter topologies



Data Networks

Multimedia & VoIP, Datacenter, SDN



















Fat-tree















# What are the bisection widths of two data centers given in Figure 2?

#### Fat tree bisection width: 8



















Jellyfish







## What are the bisection widths of two data centers given in Figure 2?

#### Jellyfish bisection width: 6



Jellyfish



Data Networks

Multimedia & VoIP, Datacenter, SDN

















Answers:

• Jellyfish costs more.







Answers:

- Jellyfish costs more.
- Jellyfish is more complex and harder to maintain and rewire.







Answers:

- Jellyfish costs more.
- Jellyfish is more complex and harder to maintain and rewire.
- Jellyfish has higher cable cost. It needs longer cable / more options of cables length because switches are not necessarily connected to switches nearby.



### Question 4 (c)



In the random graph, there are usually more than one link between two nodes. But equal-cost multipath routing (ECMP) protocol doesn't work well in the Jellyfish datacenter. Why? What other problems may occur if we simply deploy current routing algorithms to the Jellyfish datacenter?



### Question 4 (c)



In the random graph, there are usually more than one link between two nodes. But equal-cost multipath routing (ECMP) protocol doesn't work well in the Jellyfish datacenter. Why? What other problems may occur if we simply deploy current routing algorithms to the Jellyfish datacenter?



### Question 4 (c)

Answers:

• ECMP doesn't work well because multiple paths between two nodes in a random graph (or Jellyfish) usually don't have equal costs.




## Question 4 (c)

Answers:

• ECMP doesn't work well because multiple paths between two nodes in a random graph (or Jellyfish) usually don't have equal costs.

• Most traffic between two nodes would go with the shortest path which leads to traffic unbalance.





#### 74

Paths with different costs (hops) may cause packet reordering.

- Most traffic between two nodes would go with the shortest path which leads to traffic unbalance.
- ECMP doesn't work well because multiple paths between two nodes in a random graph (or Jellyfish) usually don't have equal costs.

## Question 4 (c)

Answers:





## Questions?



Data Networks

Multimedia & VoIP, Datacenter, SDN

















• Decouple software from hardware





- Decouple software from hardware
- Decouple control plane from data plane





- Decouple software from hardware
- Decouple control plane from data plane
- Faster protocol/feature updating





- Decouple software from hardware
- Decouple control plane from data plane
- Faster protocol/feature updating
- Provides an open standard API or HW/SW interface





- Decouple software from hardware
- Decouple control plane from data plane
- Faster protocol/feature updating
- Provides an open standard API or HW/SW interface
- Researchers could easily try their ideas at scale







- Decouple software from hardware
- Decouple control plane from data plane
- Faster protocol/feature updating
- Provides an open standard API or HW/SW interface
- Researchers could easily try their ideas at scale









#### What are the functions of data plane and control plane?







### What are the functions of data plane and control plane?







What are the functions of data plane and control plane? Answers:

• Data plane: packet streaming (e.g. forward, filter, buffer, mark, rate-limit, and measure packets).







What are the functions of data plane and control plane? Answers:

- Data plane: packet streaming (e.g. forward, filter, buffer, mark, rate-limit, and measure packets).
- Control plane: track topology changes, compute routes, install forwarding rules



### Question 5 (c): SDN



In 2049, we ran out of IPv6 addresses because robots learned how to replicate themselves. However, a genius invented IPv8, for which an address has 256 bits and the processing algorithm takes a new field, "INET", as input. If you were a network architect in the future world, which SDN technologies we learned in Data Network lectures would you choose to implement IPv8 protocol? Why would you choose it over the other?



### Question 5 (c): SDN



In 2049, we ran out of IPv6 addresses because robots learned how to replicate themselves. However, a genius invented IPv8, for which an address has 256 bits and the processing algorithm takes a new field, "INET", as input. If you were a network architect in the future world, which **SDN technologies** we learned in Data Network lectures would you choose to implement IPv8 protocol? Why would you choose it over the other?





• I will choose P4.





## Question 5 (c): SDN

- I will choose P4.
- IPv8 address is 256-bit which is different from the current IP address. With P4, programmers can **define new formats** while OpenFlow only supports existing formats.



## Question 5 (c): SDN

- I will choose P4.
- IPv8 address is 256-bit which is different from the current IP address. With P4, programmers can **define new formats** while OpenFlow only supports existing formats.
- IPv8 needs a new processing algorithm than the current IP processing algorithm. With P4, programmers can define new processing algorithms but OpenFlow only supports existing actions and there are only limited number of them.





## Questions?



Data Networks

Multimedia & VoIP, Datacenter, SDN