Midterm-Assignment

Get the Slides here

tinyurl.com/bddr84hj

Assignment Overview

- Mixed-Bag (Multiple Choice Questions)
- TCP Congestion Control
- HTTP
-TCP Fairness and UDP

Multiple Choice

The following questions are multiple choice questions. At least one choice is true and at least one choice is false. Please mark all the true choices with a cross. To correct a misplaced cross, draw an empty symbol to the right of the line. For each question, points will only be given if all choices are marked correctly.

Multiple Choice

The following questions are multiple choice questions. At least one choice is true and at least one choice is false. Please mark all the true choices with a cross. To correct a misplaced cross, draw an empty symbol to the right of the line. For each question, points will only be given if all choices are marked correctly.

Question 1a)

UDP: Which statements are correct?
DUDP is a connection-oriented protocol.
\square In UDP packet loss will be detected by a triple duplicate ACK.
-UDP provides best-effort service.
-UDP is a stateless protocol

Question 1a)

UDP: Which statements are correct?
DUDP is a connection-oriented protocol.
In UDP packet loss will be detected by a triple duplicate ACK.
■UDP provides best-effort service.
\square UDP is a stateless protocol.

Question 1a)

UDP: Which statements are correct?
DUDP is a connection-oriented protocol.
IIn UDP packet loss will be detected by a triple duplicate ACK.
\checkmark UDP provides best-effort service.
\checkmark UDP is a stateless protocol.

Question 1b)

What delays can occur in packet-switched networks?
\square Queuing delays.
\square Processing delays.
Call setup delays.
\square Propagation delays.

Question 1b)

What delays can occur in packet-switched networks?
\square Queuing delays.
\square Processing delays.
Call setup delays.
\square Propagation delays.

Question 1b)

What delays can occur in packet-switched networks?
\checkmark Queuing delays.
\checkmark Processing delays.
\square Call setup delays.
\checkmark Propagation delays.

Question 1c)

Which Internet protocols map an identifier to another identifiers?

DDNS
口HTTP
DIMAP
口SMTP

Question 1c)

Which Internet protocols map an identifier to another identifiers?

DDNS

- HTTP

DIMAP
口SMTP

Question 1c)

Which Internet protocols map an identifier to another identifiers?
\checkmark DNS
口HTTP
DIMAP
■SMTP

Question 1d)

Which of these are application-layer protocols?
DICMP.
DIMAP.
DIPv6.
DUDP.

Question 1d)

Which of these are application-layer protocols?
DICMP.
DIMAP.
DlPv6. GUDP.

Question 1d)

Which of these are application-layer protocols? DICMP. \checkmark IMAP.
DIPv6. DUDP.

Question 1e)

Which of the following statements are true regarding persistent and non-persistent HTTP?

DPersistent HTTP requires a new TCP connection for each request.
DNon-persistent HTTP can improve performance by reducing the overhead of establishing new connections.
\square Persistent HTTP allows multiple requests to be sent over a single TCP connection.
\square Persistent HTTP does not require 2 RTT (round trip time) for each object that is to be transmitted.

Question 1e)

Which of the following statements are true regarding persistent and non-persistent HTTP?
\square Persistent HTTP requires a new TCP connection for each request.
\square Non-persistent HTTP can improve performance by reducing the overhead of establishing new connections.
\square Persistent HTTP allows multiple requests to be sent over a single TCP connection.
\square Persistent HTTP does not require 2 RTT (round trip time) for each object that is to be transmitted.

Question 1e)

Which of the following statements are true regarding persistent and non-persistent HTTP?
\square Persistent HTTP requires a new TCP connection for each request.
\square Non-persistent HTTP can improve performance by reducing the overhead of establishing new connections. \checkmark Persistent HTTP allows multiple requests to be sent over a single TCP connection.
\checkmark Persistent HTTP does not require 2 RTT (round trip time) for each object that is to be transmitted.

Question 1f)

Which of the following statements are true regarding traceroute?

Traceroute identifies the fastest route between a source and destination.
Traceroute determines the network hops between a source and the destination.
Traceroute determines the network hops between a destination and the source.
\square Traceroute relies on the time-to-live (TTL) field in the IP packet header.

Question 1f)

Which of the following statements are true regarding traceroute?

OTraceroute identifies the fastest route between a source and destination.
Traceroute determines the network hops between a source and the destination.
Traceroute determines the network hops between a destination and the source.
Traceroute relies on the time-to-live (TTL) field in the IP packet header.

Question 1f)

Which of the following statements are true regarding traceroute?

OTraceroute identifies the fastest route between a source and destination.
\checkmark Traceroute determines the network hops between a source and the destination.
Traceroute determines the network hops between a destination and the source.
\checkmark Traceroute relies on the time-to-live (TTL) field in the IP packet header.

Question 1g)

Which statements about IPv6 are correct?
$\square I P v 6$ guarantees reliable data transfer.
\square Forwarding in IPv6 is done via longest prefix matching.
\square The IPv6 address space is more than 10,000 times larger than that of IPv4.
\square With IPv6, link-local addresses are generated automatically (i.e., without requiring any intervention from an administrator).

Question 1g)

Which statements about IPv6 are correct?
DIPv6 guarantees reliable data transfer.
\square Forwarding in IPv6 is done via longest prefix matching.
\square The IPv6 address space is more than 10,000 times larger than that of IPv4.
\square With IPv6, link-local addresses are generated automatically (i.e., without requiring any intervention from an administrator).

Question 1g)

Which statements about IPv6 are correct?
DIPv6 guarantees reliable data transfer.
\checkmark Forwarding in IPv6 is done via longest prefix matching.
\checkmark The IPv6 address space is more than 10,000 times larger than that of IPv4.
\checkmark With IPv6, link-local addresses are generated automatically (i.e., without requiring any intervention from an administrator).

Question 1h)

Which statements about Open-Shortest-PathFirst (OSPF) are correct?
\square OSPF is an inter domain routing protocol (EGP).
-OSPF uses Dijkstra's Algorithm.
\square OSPF is not a distance vector routing protocol.
-OSPF is a path vector routing protocol.

Question 1h)

Which statements about Open-Shortest-PathFirst (OSPF) are correct?
\square OSPF is an inter domain routing protocol (EGP).
-OSPF uses Dijkstra's Algorithm.
OOSPF is not a distance vector routing protocol.
DOSPF is a path vector routing protocol.

Which statements about Open-Shortest-PathFirst (OSPF) are correct?

COSPF is an inter domain routing protocol (EGP). \checkmark OSPF uses Dijkstra's Algorithm. \checkmark OSPF is not a distance vector routing protocol. DOSPF is a path vector routing protocol.

Question 1i)

Which statements about DNS are correct?
$\square D N S$ is a centralized system.
\square A type resp. AAAA type resource records are used to map hostnames to IP addresses.
\square The $M X$ record is relevant for e-mail.
\square In order to minimize the number of DNS requests, small TTL values should be chosen.

Question 1i)

Which statements about DNS are correct?
$\square D N S$ is a centralized system.
\square A type resp. AAAA type resource records are used to map hostnames to IP addresses.
The $M X$ record is relevant for e-mail.
\square In order to minimize the number of DNS requests, small TTL values should be chosen.

Question 1i)

Which statements about DNS are correct?
\square DNS is a centralized system.
\checkmark A type resp. AAAA type resource records are used to map hostnames to IP addresses.
\checkmark The MX record is relevant for e-mail.
\square In order to minimize the number of DNS requests, small TTL values should be chosen.

Question 1j)

Routing: Which statements are correct?
In the Internet, BGP is used to advertise routes between ASes.
-BGP guarantees optimal paths.
\square The "count to infinity" problem cannot occur in link state algorithms.
OOSPF has the same feature set as BGP.

Routing: Which statements are correct?
\square In the Internet, BGP is used to advertise routes between ASes.
\square BGP guarantees optimal paths.
DThe "count to infinity" problem cannot occur in link state algorithms.
\square OSPF has the same feature set as BGP.

Question 1j)

Routing: Which statements are correct?
\checkmark In the Internet, BGP is used to advertise routes between ASes.
\square BGP guarantees optimal paths.
\checkmark The "count to infinity" problem cannot occur in link state algorithms.
\square OSPF has the same feature set as BGP.

Question 2)

Consider the sequence diagram in Figure 1 on page 7. The diagram shows an excerpt of an ongoing TCP Reno connection between Sender and Receiver. The solid arrows represent TCP segments with data while the dotted arrows correspond to TCP acknowledgments. The first segment has the sequence number 2000 and is sent at $t=0$. The second segment has the sequence number 2500 and is sent at $t=1$, etc. Assume that the segment with sequence number 2500 is lost on the path from sender to receiver.

Question 2)

Consider the sequence diagram in Figure 1 on page 7. The diagram shows an excerpt of an ongoing TCP Reno connection between Sender and Receiver. The solid arrows represent TCP segments with data while the dotted arrows correspond to TCP acknowledgments. The first segment has the sequence number 2000 and is sent at $t=0$. The second segment has the sequence number 2500 and is sent at $t=1$, etc. Assume that the segment with sequence number 2500 is lost on the path from sender to receiver.

Question 2a)

What is the MSS used in the connection?

Sender

Question 2a)

What is the MSS used in the connection?

Sender

Question 2a)

What is the MSS used in the connection?

MSS: 500b

Sender

Question 2b)

What is the RTT (round trip time) based on the relative time?

Question 2b)

What is the RTT (round trip time) based on the relative time?

Question 2b)

What is the RTT (round trip time) based on the relative time?

Question 2b)

What is the RTT (round trip time) based on the relative time?

Question 2b)

What is the RTT (round trip time) based on the relative time?

Question 2b)

What is the RTT (round trip

$$
\mathrm{RTT}=10
$$

Question 2c)

In Figure 1, 9 Sequence numbers (Seq\#) and 12 acknowledgment numbers (Ack\#) are missing. Write the correct sequence and acknowledgment numbers directly into Figure 2.

Question 2c)

In Figure 1, 9 Sequence numbers (Seq\#) and 12 acknowledgment numbers (Ack\#) are missing. Write the correct sequence and acknowledgment numbers directly into Figure 2.
Seq\# 2000

Question 2c)

In Figure 1, 9 Sequence numbers (Seq\#) and 12 acknowledgment numbers (Ack\#) are missing. Write the correct sequence and acknowledgment numbers directly into Figure 2.

Seq\# 2000	0	0	relative
Seq\# 2500	1	1	time t
Seq\# 3000	2	2	
Seq\# 3500	3	3	
Seq\# 4000	4	4	
Seq\# 4500	5	5	\# 2500

Question 2c)

In Figure 1, 9 Sequence numbers (Seq\#) and 12 acknowledgment numbers (Ack\#) are missing. Write the correct sequence and acknowledgment numbers directly into Figure 2.

Sender Receiver

Question 2c)

In Figure 1, 9 Sequence numbers (Seq\#) and 12 acknowledgment numbers (Ack\#) are missing. Write the correct sequence and acknowledgment numbers directly into Figure 2.

Question 2c)

In Figure 1, 9 Sequence numbers (Seq\#) and 12 acknowledgment numbers (Ack\#) are missing. Write the correct sequence and acknowledgment numbers directly into Figure 2.

MTU: 500
Seq\# 5500

Sender

7	Ack\# 2500
8	Ack\# 2500
9	Ack\# 2500
10	Ack\# 2500
11	Ack\# 2500
12	Ack\# 2500
13	
14	

Question 2c)

In Figure 1, 9 Sequence numbers (Seq\#) and 12 acknowledgment numbers (Ack\#) are missing. Write the correct sequence and acknowledgment numbers directly into Figure 2.

Sender

7	Ack\# 2500
8	Ack\# 2500
9	Ack\# 2500
10	Ack\# 2500
11	Ack\# 2500
12	Ack\# 2500
13	
14	

Question 2c)

In Figure 1, 9 Sequence numbers (Seq\#) and 12 acknowledgment numbers (Ack\#) are missing. Write the correct sequence and acknowledgment numbers directly into Figure 2.

MTU: 500

Question 2c)

In Figure 1, 9 Sequence numbers (Seq\#) and 12 acknowledgment numbers (Ack\#) are missing. Write the correct sequence and acknowledgment numbers directly into Figure 2.

Midterm

MTU: 500
Sender
Receiver
Seq\# 2500

Question 2c)

In Figure 1, 9 Sequence numbers (Seq\#) and 12 acknowledgment numbers (Ack\#) are missing. Write the correct sequence and acknowledgment numbers directly into Figure 2.

MTU: 500

Sender

Receiver

19	Ack\# 8000
20	
21	
22	
23	
24	
25	

Question 2d)

State the time at which the third duplicate acknowledgment arrives at the sender.

Question 2d)

State the time at which the third duplicate acknowledgment arrives at the sender.

Question 2d)

State the time at which the third duplicate acknowledgment arrives at the sender.

Sender Receiver

Question 2d)

State the time at which the third duplicate acknowledgment arrives at the sender.

Sender Receiver

Question 2d)

State the time at which the third duplicate acknowledgment arrives at the sender.

Sender Receiver

Question 2d)

State the time at which the third duplicate acknowledgment arrives at the sender.

Sender Receiver

Question 2e)

Explain in not more than two sentences in the space below why the sender does not transmit a segment after receiving an ACK at $\mathrm{t}=20$.

Question 2e)

Explain in not more than two sentences in the space below why the sender does not transmit a segment after receiving an ACK at $t=20$.

Explain in not more than two sentences in the space below why the sender does not transmit a segment after receiving an ACK at $t=20$.

- What is the congestion window?
-> Reset by triple duplicate ACKs.

Question 2e)

Explain in not more than two sentences in the space below why the sender does not transmit a segment after receiving an ACK at $t=20$.

- What is the congestion window?
-> Reset by triple duplicate ACKs.
-> CWND is full.
-> Must wait for missing ACKs to arrive

Question 2e)

Explain in not more than two sentences in the space below why the sender does not transmit a segment after receiving an ACK at $t=20$.

- What is the congestion window?
-> Reset by triple duplicate ACKs.
-> CWND is full.
-> Must wait for missing ACKs to arrive
Answer: The CWND is changed due to the triple duplicate ACKs. The number of packets in flight is greater than CWND, so the senders needs to wait for ACK of last un-ACK-ed packet in flight.

Question 2f)

Identify the congestion control state the algorithm is in at $\mathrm{t}=25$.

Question 2f)

Identify the congestion control state the algorithm is in at $\mathrm{t}=25$.

Question 2f)

Identify the congestion control state the algorithm is in at $\mathrm{t}=25$.

- Just has been catching up with packet loss/congestion.

Question 2f)

Identify the congestion control state the algorithm is in at $\mathrm{t}=25$.

- Just has been catching up with packet loss/congestion.
-> Congestion Avoidance

Question 3)

Consider the network depicted below. It consists of the following elements:

- Client C
- Web server U
- Web server W
- NAT Enabled Router R

Client C has previously fetched the front page (index.html) from Web Server U. After reading index.html, the client knows that it should download two additional files, namely pic1.jpg, and pic2.jpg from Web Server W. Client C starts fetching first pic1.jpg and then pic2.jpg; using HTTP 1.1. Client C already knows the IP address of Web Server W.
pic2.jpg has been recently deleted by the admin of Web Server W and no longer exists on the server. The client is not aware of this change.
Write down all packets visible at the link of Web Server W involving this transaction in the Table.
Consider only protocols of the network, transport and application layer, that is, IP and above. Also, consider all packets necessary for connection setup and tear-down! When possible, the client puts multiple HTTP requests in one TCP segment. Web Server W processes one request at a time.

Question 3)

Consider the network depicted below. It consists of the following elements:

- Client C
- Web server U
- Web server W
- NAT Enabled Router R

Assumptions:

- Sequence numbers always start at 3000 for C and 6000 for W.
- The client terminates the connection after the HTTP transfer.
- Maximum Segment Size (MSS): 800 Byte.
- HTTP-Header-Sizes:
- Request: 400 Byte.
- Response: 250 Byte.
- File size of pic1.jpg: 1350 Byte.
- File size of pic2.jpg: 550 Byte.

Question 3)

Consider the network depicted

 below. It consists of the following elements:- Client C
- Web server U
- Web server W
- NAT Enabled Router R

Client C has previously fetched the front page (index.html) from Web Server U. After reading index.html, the client knows that it should download two additional files, namely pic1.jpg, and pic2.jpg from Web Server W. Client C starts fetching first pic1.jpg and then pic2.jpg; using HTTP 1.1. Client C already knows the IP address of Web Server W.
pic2.jpg has been recently deleted by the admin of Web Server W and no longer exists on the server. The client is not aware of this change.

Write down all packets visible at the link of Web Server W involving this transaction in the Table.
Consider only protocols of the network, transport and application layer, that is, IP and above. Also, consider all packets necessary for connection setup and tear-down! When possible, the client puts multiple HTTP requests in one TCP segment. Web
Server W processes one request at a time.

Question 3)

Consider the network depicted below. It consists of the following elements:

- Client C
- Web server U
- Web server W
- NAT Enabled Router R

Assumptions:

- Sequence numbers always start at 3000 for C and 6000 for W.
- The client terminates the connection after the HTTP transfer.
- Maximum Segment Size (MSS): 800 Byte.
- HTTP-Header-Sizes:
- Request: 400 Byte.
- Response: 250 Byte.
- File size of pic1.jpg: 1350 Byte.
- File size of pic2.jpg: 550 Byte.

Question 3)

Src IP	Dst IP	Sre Port	Dst Port	Seq\#	Ack\#	TCP Flags	Content

Question 3)

Src IP	Dst IP	Sre Port	Dst Port	Seq\#	Ack\#	TCP Flags	Content
200.12.33.55	112.112.1.1	12345(any)	80			SYN	
			first pic1.jpg and then pic2.jpg; using HTTP 1.1. Client C already knows the IP address of Web Server W.				

Question 3)

Src IP	Dst IP	Src Port	Dst Port	Seq\#	Ack\#\#	TCP Flags	Content
200.12.33.55	112.112.1.1	12345(any)	80	3000		SYN	
					S	ence num	ers always start at 3000 for C

Question 3)

Src IP	Dst IP	Src Port	Dst Port	Seq\#\#	Ack $\#$	TCP Flags	Content
200.12.33.55	112.112.1.1	12345(any)	80	3000		SYN	
112.112.1.1	200.12.33.55	80	12345		3001	SYN/ACK	

Question 3)

Src IP	Dst IP	Src Port	Dst Port	Seq\#	Ack\#	TCP Flags	Content
200.12.33.55	112.112.1.1	12345(any)	80	3000		SYN	
112.112.1.1	200.12.33.55	80	12345	6000	3001	SYN/ACK	
				Sequence numbers always start at 3000 for C and 6000 for W.			

Question 3)

SrC IP	Dst IP	SrC Port	Dst Port	Seq\#\#	Ack $\#$	TCP Flags	Content
200.12.33.55	112.112.1.1	12345 (any)	80	3000		SYN	
112.112.1.1	200.12.33.55	80	12345	6000	3001	SYN/ACK	
200.12.33.55	112.112.1.1	12345	80	3001	6001	ACK	

Question 3)

Src IP	Dst IP	Src Port	Dst Port	Seq\#	Ack\#	TCP Flags	Content
200.12.33.55	112.112.1.1	12345(any)	80	3000		SYN	
112.112.1.1	200.12.33.55	80	12345	6000	3001	SYN/ACK	
200.12.33.55	112.112.1.1	12345	80	3001	6001	ACK	HTTP GET pic1 + pic2 (800 Bytes)
				Client C starts fetching first pic1.jpg and then pic2.jpg; using HTTP 1.1. Client C already knows the IP address of Web Server W.			
						- HTTP-Header-Sizes: - Request: 400 Byte.	
					Maximum Segment Size (MSS): 800 Byte.		

Question 3)

Src IP	Dst IP	Src Port	Dst Port	Seq\#\#	Ack $\#$	TCP Flags	Content
200.12.33.55	112.112.1.1	12345 (any)	80	3000		SYN	
112.112.1.1	200.12.33.55	80	12345	6000	3001	SYN/ACK	
200.12.33.55	112.112.1.1	12345	80	3001	6001	ACK	HTTP GET pic1 + pic2 (800 Bytes)
112.112.1.1	200.12.33.55	80	12345	6001			

Question 3)

Src IP	Dst IP	Sre Port	Dst Port	Seq\#	Ack\#	TCP Flags	Content
200.12.33.55	112.112.1.1	12345(any)	80	3000		SYN	
112.112.1.1	200.12.33.55	80	12345	6000	3001	SYN/ACK	
200.12.33.55	112.112.1.1	12345	80	3001	6001	ACK	HTTP GET pic1 + pic2 (800 Bytes)
112.112.1.1	200.12.33.55	80	12345	6001	3801		

Question 3)

Src IP	Dst IP	Src Port	Dst Port	Seq\#\#	Ack\#	TCP Flags	Content
200.12.33.55	112.112.1.1	12345(any)	80	3000		SYN	
112.112.1.1	200.12.33.55	80	12345	6000	3001	SYN/ACK	
200.12.33.55	112.112.1.1	12345	80	3001	6001	ACK	HTTP GET pic1 + pic2 (80o Bytes)
112.112.1.1	200.12.33.55	80	12345	6001	3801	ACK	HTTP Response Hdr (250 Bytes) + 550 Bytes Pic1
		- HTTP-Header-Sizes: - Request: 400 Byte. - Response: 250 Byte.					
						Maximum Segment Size (MSS): 800 Byte.	
		- File size of pic1.jpg: 1350 Byte.					
		- File size of pic2.jpg: 550 Byte.					

Question 3)

Question 3)

Src IP	Dst IP	Sre Port	Dst Port	Seq\#	Ack\#	TCP Flags	Content
200.12.33.55	112.112.1.1	12345(any)	80	3000		SYN	
112.112.1.1	200.12.33.55	80	12345	6000	3001	SYN/ACK	
200.12.33.55	112.112.1.1	12345	80	3001	6001	ACK	HTTP GET pic1 + pic2 (800 Bytes)
112.112.1.1	200.12.33.55	80	12345	6001	3801	ACK	HTTP Response Hdr (250 Bytes) +550 Bytes Pic1
112.112.1.1	200.12.33.55	80	12345	6801			800 Bytes Pic1
112.112.1.1	200.12.33.55	80	12345	7601			HTTP Not Found (250 Bytes)
		- HTTP-Header-Sizes: - Request: 400 Byte. - Response: 250 Byte.					
					pic2.jpg has been recently deleted by the admin of Web Server W and no longer exists on the server.		

Question 3)

Src IP	Dst IP	Src Port	Dst Port	Seq\#	Ack\#\#	TCP Flags	Content
200.12.33.55	112.112.1.1	12345(any)	80	3000		SYN	
112.112.1.1	200.12.33.55	80	12345	6000	3001	SYN/ACK	
200.12.33.55	112.112.1.1	12345	80	3001	6001	ACK	HTTP GET pic1 + pic2 (800 Bytes)
112.112.1.1	200.12.33.55	80	12345	6001	3801	ACK	HTTP Response Hdr (250 Bytes) +550 Bytes Pic1
112.112.1.1	200.12.33.55	80	12345	6801			800 Bytes Pic1
112.112.1.1	200.12.33.55	80	12345	7601			HTTP Not Found (250 Bytes)
200.12.33.55	112.112.1.1	12345	80			ACK/FIN	
						The client terminates the connection after the HTTP transfer.	

Question 3)

SrC IP	Dst IP	SrC Port	Dst Port	Seq $\#$	Ack $\#$	TCP Flags	Content
200.12.33.55	112.112.1.1	12345 (any)	80	3000		SYN	
112.112.1.1	200.12.33.55	80	12345	6000	3001	SYN/ACK	
200.12.33.55	112.112.1.1	12345	80	3001	6001	ACK	HTTP GET pic1 + pic2 (800 Bytes)
112.112.1.1	200.12.33.55	80	12345	6001	3801	ACK	HTTP Response Hdr (250 Bytes) + 550 Bytes Pic1
112.112.1.1	200.12.33.55	80	12345	6801			800 Bytes Pic1
112.112.1.1	200.12 .33 .55	80	12345	7601			HTTP Not Found (250 Bytes)
200.12.33.55	112.112.1.1	12345	80	3801	7851	ACK/FIN	

Question 3)

SrC IP	Dst IP	SrC Port	Dst Port	Seq $\#$	Ack $\#$	TCP Flags	Content
200.12.33.55	112.112.1.1	12345 (any)	80	3000		SYN	
112.112.1.1	200.12.33.55	80	12345	6000	3001	SYN/ACK	
200.12.33.55	112.112.1.1	12345	80	3001	6001	ACK	HTTP GET piC1 + pic2 (800 Bytes)
112.112.1.1	200.12 .33 .55	80	12345	6001	3801	ACK	HTTP Response Hdr (250 Bytes) + 550 Bytes Pic1
112.112.1.1	200.12.33.55	80	12345	6801			800 Bytes Pic1
112.112.1.1	200.12 .33 .55	80	12345	7601			HTTP Not Found (250 Bytes)
200.12.33.55	112.112.1.1	12345	80	3801	7851	ACK/FIN	
112.112.1.1	200.12 .33 .55	80	12345	7851	3802	ACK/FIN	

Question 3)

SrC IP	Dst IP	Src Port	Dst Port	Seq;	Ack\#	TCP Flags	Content
200.12.33.55	112.112.1.1	12345 (any)	80	3000		SYN	
112.112.1.1	200.12.33.55	80	12345	6000	3001	SYN/ACK	
200.12.33.55	112.112.1.1	12345	80	3001	6001	ACK	HTTP GET pic1 + pic2 (800 Bytes)
112.112.1.1	200.12 .33 .55	80	12345	6001	3801	ACK	HTTP Response Hdr (250 Bytes) + 550 Bytes Pic1
112.112.1.1	$200.12 .33 \cdot 55$	80	12345	6801			800 Bytes Pic1
112.112.1.1	200.12 .33 .55	80	12345	7601			HTTP Not Found (250 Bytes)
200.12.33.55	112.112.1.1	12345	80	3801	7851	ACK/FIN	
112.112.1.1	$200.12 .33 \cdot 55$	80	12345	7851	3802	ACK/FIN	
200.12.33.55	112.112.1.1	12345	80	3802	7852	ACK	

Question 3)

SrC IP	Dst IP	SrC Port	Dst Port	Seq\#	Ack\#	TCP Flags	Content
200.12.33.55	112.112.1.1	12345 (any)	80	3000		SYN	
112.112.1.1	200.12.33.55	80	12345	6000	3001	SYN/ACK	
200.12.33.55	112.112.1.1	12345	80	3001	6001	ACK	HTTP GET piC1 + pic2 (800 Bytes)
112.112.1.1	200.12.33.55	80	12345	6001	3801	ACK	HTTP Response Hdr (250 Bytes) + 550 Bytes Pic1
112.112.1.1	200.12.33.55	80	12345	6801			800 Bytes Pic1
112.112.1.1	$200.12 .33 \cdot 55$	80	12345	7601			HTTP Not Found (250 Bytes)
200.12.33.55	112.112.1.1	12345	80	3801	7851	ACK/FIN	
112.112.1.1	200.12 .33 .55	80	12345	7851	3802	ACK/FIN	
200.12.33.55	112.112.1.1	12345	80	3802	7852	ACK	

Question 4)

Consider the network topology shown in Figure 1. Assume the long-lived TCP flows, A, B, C and D exchanging large amounts of data in both directions. These are the only flows using the network. The bandwidth on all links is $100 \mathrm{Mbit} / \mathrm{s}$. You can assume that the flows are not limited by any receiver window.

Question 4)

Consider the network topology shown in Figure 1. Assume the long-lived TCP flows, A, B, C and D exchanging large amounts of data in both directions. These are the only flows using the network. The bandwidth on all links is $100 \mathrm{Mbit} / \mathrm{s}$. You can assume that the flows are not limited by any receiver
 window.

Question 4a)

Estimate the average transmission rate for each flow.

Question 4a)

Estimate the average transmission rate for each flow.

Question 4a)

Estimate the average transmission rate for each flow.

A:
B:
C:
D:

Question 4a)

Estimate the average transmission rate for each flow.

A: 1/3*100 Mbps (Sharing with B/C)
B:
C:
D:

Question 4a)

Estimate the average transmission rate for each flow.

A: $1 / 3{ }^{*} 100 \mathrm{Mbps}$ (Sharing with B / C)
B: 1/3*100 Mbps (Sharing with A/C)
C:
D:

Question 4a)

Estimate the average transmission rate for each flow.

A: $1 / 3$ *100 Mbps (Sharing with B / C)
B: $1 / 3{ }^{*} 100 \mathrm{Mbps}$ (Sharing with A / C)
C: 1/2*100 Mbps?
D:

Question 4a)

Estimate the average transmission rate for each flow.

A: 1/3*100 Mbps (Sharing with B/C)
B: $1 / 3{ }^{*} 100 \mathrm{Mbps}$ (Sharing with A / C)
C: $1 / 2 *_{100} \mathrm{Mbps} ? 1 / 3 * 100 \mathrm{Mbps}$
D:

Question 4a)

Estimate the average transmission rate for each flow.

A: $1 / 3$ *100 Mbps (Sharing with B / C)
B: 1/3*100 Mbps (Sharing with A/C)
C: 1/3*100 Mbps (Sharing with A/B)
D: 2/3*100 Mbps

Question 4b)

Assume now that the TCP flow D is substituted by a UDP flow. Both endpoints still exchange data using all bandwidth available to them. Estimate the average transmission rate for each flow.

Question 4b)

Assume now that the TCP flow D is substituted by a UDP flow. Both endpoints still exchange data using all bandwidth available to them. Estimate the average transmission rate for each flow.

Question 4b)

Assume now that the TCP flow D is substituted by a UDP flow. Both endpoints still exchange data using all bandwidth available to them. Estimate the average transmission rate for each flow.

A:
B:
C:

Question 4b)

Assume now that the TCP flow D is substituted by a UDP flow. Both endpoints still exchange data using all bandwidth available to them. Estimate the average transmission rate for each flow.

A:
B:
C:

Question 4b)

Assume now that the TCP flow D is substituted by a UDP flow. Both endpoints still exchange data using all bandwidth available to them. Estimate the average transmission rate for each flow.

C: o mbit (Starved by D)
D: 100 mbit

Question 4b)

Assume now that the TCP flow D is substituted by a UDP flow. Both endpoints still exchange data using all bandwidth available to them. Estimate the average transmission rate for each flow.

A: o mbit (Starved by D)
B:
C: o mbit (Starved by D)

D: 100 mbit

Question 4b)

Assume now that the TCP flow D is substituted by a UDP flow. Both endpoints still exchange data using all bandwidth available to them. Estimate the average transmission rate for each flow.

A: o mbit (Starved by D)
B: 100 mbit (A/C Starved!)
C: o mbit (Starved by D)

D: 100 mbit

Question 4c)

Assume now that the TCP flow D has the bandwidth of $50 \mathrm{Mbit} / \mathrm{s}$ instead of $100 \mathrm{Mbit} / \mathrm{s}$. Both endpoints still exchange data using all bandwidth available to them. Given this change, estimate the new average transmission rate for each flow (A, B, C, D).

Question 4c)

Assume now that the TCP flow D has the bandwidth of $50 \mathrm{Mbit} / \mathrm{s}$ instead of $100 \mathrm{Mbit} / \mathrm{s}$. Both endpoints still exchange data using all bandwidth available to them. Given this change, estimate the new average transmission rate for each flow (A, B, C, D).

Question 4c)

Assume now that the TCP flow D has the bandwidth of $50 \mathrm{Mbit} / \mathrm{s}$ instead of $100 \mathrm{Mbit} / \mathrm{s}$. Both endpoints still exchange data using all bandwidth available to them. Given this change, estimate the new average transmission rate for each flow (A, B, C, D).

A:
B:
C:

Question 4c)

Assume now that the TCP flow D has the bandwidth of $50 \mathrm{Mbit} / \mathrm{s}$ instead of $100 \mathrm{Mbit} / \mathrm{s}$. Both endpoints still exchange data using all bandwidth available to them. Given this change, estimate the new average transmission rate for each flow (A, B, C, D).

A:
B:
C:

D: 50 mbit (Set by question!)

Question 4c)

Assume now that the TCP flow D has the bandwidth of $50 \mathrm{Mbit} / \mathrm{s}$ instead of $100 \mathrm{Mbit} / \mathrm{s}$. Both endpoints still exchange data using all bandwidth available to them. Given this change, estimate the new average transmission rate for each flow (A, B, C, D).
A: $1 / 3$ * 100 mbit (Sharing with B / C)
B: $1 / 3$ * 100 mbit (Sharing with A / C)
C:

D: 50 mbit

Question 4c)

Assume now that the TCP flow D has the bandwidth of $50 \mathrm{Mbit} / \mathrm{s}$ instead of $100 \mathrm{Mbit} / \mathrm{s}$. Both endpoints still exchange data using all bandwidth available to them. Given this change, estimate the new average transmission rate for each flow (A, B, C, D).
$A: 1 / 3$ * 100 mbit (Sharing with B / C)
B: $1 / 3$ * 100 mbit (Sharing with A / C)
C: $1 / 3$ * 100 mbit (Sharing with A / B)
D: 50 mbit
(20)

Question 4c)

Assume now that the TCP flow D has the bandwidth of $50 \mathrm{Mbit} / \mathrm{s}$ instead of $100 \mathrm{Mbit} / \mathrm{s}$. Both endpoints still exchange data using all bandwidth available to them. Given this change, estimate the new average transmission rate for each flow (A, B, C, D).
$A: 1 / 3$ * 100 mbit (Sharing with B / C)
B: $1 / 3$ * 100 mbit (Sharing with A / C)
C: $1 / 3$ * 100 mbit (Sharing with A / B)
D: 50 mbit (2/3 * 100 mbit available!)

Questions?

