

Data Networks

Introduction

Data Networks

Goals:

- Get "feel" & terminology
- More depth, detail *later* in course
- Approach:
 - Use Internet as example

Overview.

- What's the Internet?
- What's a protocol?
- Network edge:
 - End-systems, access net, physical media
- Network core:
 - Packet/circuit switching, Network structure
- Performance: *Delay, loss, throughput*
- Protocol layers, service models
- Networks under attack: Security
- History

Goals:

- Get "feel" & terminology
- More depth, detail *later* in course
- Approach:
 - Use Internet as example

Overview.

- What's the Internet?
- What's a protocol?
- Network edge:
 - End-systems, access net, physical media
- Network core:
 - Packet/circuit switching, Network structure
- Performance: *Delay, loss, throughput*
- Protocol layers, service models
- Networks under attack: Security
- History

Data Networks

A closer look at network structure:

- Network edge:
 - Hosts: Clients and servers
 - Servers often in data centers
- Access networks, physical media:
 - Wired, wireless communication links
- Network core:
 - Interconnected routers
 - Network of networks

to edge router? Residential access networks

Q: How to connect end systems

- Institutional access networks (school, company)
- Mobile access networks

Keep in mind:

- Bandwidth (bits per second) of access network?
- Shared or dedicated?

Access networks and physical media

Access network: Digital subscriber line (DSL)

Use *existing* telephone line to central office DSLAM

- Data over (v)DSL phone line goes to Internet
- Voice over (v)DSL phone line goes to telephone net via Internet
- < 10 Mbps upstream transmission rate (typically < 5 Mbps)
- < 100 Mbps downstream transmission rate (typically < 24 Mbps)

Access network: Cable network

Frequency division multiplexing: Different channels transmitted in different frequency bands

Data Networks

Access network: Cable network

- HFC: hybrid fiber coax
 - Asymmetric: Up to 30 Mbps downstream transmission rate, 2 Mbps upstream transmission rate
- Network of cable, fiber attaches homes to ISP router
 - Homes share access network to cable headend
 - Unlike DSL, which has dedicated access to central office

Enterprise access networks (Ethernet)

- Typically used in companies, universities, etc.
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- Today, end systems typically connect via Ethernet switch

Wireless access networks

- Shared wireless access network connects end system to router
 - Via base station aka "access point"

Wireless LANs:

- Within building (100 ft.)
- 802.11b/g/n (WiFi): 11, 54, 450 Mbps transmission rate

to Internet

Wide-area wireless access:

- Provided by telco (cellular) operator, 10' s km
- Between 1 and 10 Mbps
- 3G, 4G: LTE

Host: Sends packets of data

_

Host sending function:

- Takes application message
- Breaks into smaller chunks, known as packets, of length L bits
- Transmits packet into access network at transmission rate R
 - Link transmission rate, aka link capacity, aka link bandwidth

Packet transmission

delay

Physical media

- Bit:
 - Propagates between transmitter/receiver pairs
- Physical link:
 - What lies between transmitter
 & receiver
- Guided media:
 - Signals propagate in solid media: copper, fiber, coax
- Unguided media:
 - Signals propagate freely, e.g., radio

Twisted pair (TP)

- Two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10 Gbps

Physical media: Coax, fiber

Coaxial cable:

- Two concentric copper conductors
- Bidirectional
- Broadband:
 - Multiple channels on cable
 - HFC

- Glass fiber carrying light pulses, each pulse a bit
- High-speed operation:
 - High-speed point-to-point transmission (e.g., 10's-100's Gbps transmission rate)
- Low error rate:
 - Repeaters spaced far apart
 - Immune to electromagnetic noise

Physical media: Radio

- Signal carried in electromagnetic spectrum
- No physical "wire"
- Bidirectional
- Propagation environment effects:
 - Reflection
 - Obstruction by objects
 - Interference

Radio link types:

- Terrestrial microwave
 - E.g., up to 45 Mbps channels
- LAN (e.g., WiFi)
 - 54 Mbps
- Wide-area (e.g., cellular)
 - 4G cellular: ~ 10 Mbps
- Satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 ms end-to-end delay
 - geosynchronous versus low altitude

Goals:

- Get "feel" & terminology
- More depth, detail *later* in course
- Approach:
 - Use Internet as example

Overview.

- What's the Internet?
- What's a protocol?
- Network edge:
 - End-systems, access net, physical media
- Network core:
 - Packet/circuit switching, Network structure
- Performance: *Delay, loss, throughput*
- Protocol layers, service models
- Networks under attack: Security
- History

