
Application Layer
Socket Programming

Prof. Anja Feldmann, Ph.D.

Thorben Krüger, MSc

(Based on slide deck of Computer Networking, 7th ed., Jim Kurose and Keith Ross.)

Application Layer Protocols

 HTTP

 DNS

 Email (SMTP/IMAP/POP3)

 Your own protocol?

Data exchange between hosts: General

 How do we get two hosts to exchange arbitrary
data?
− Without trying to use HTTP or SMTP or IMAP

Sockets!

What are sockets?

 Abstract representation of a network connection on
application level
− Corresponding API provided by the host‘s OS

− OS responsible for actual data transmission

− Application responsible for content

 Makes sending data to a connected remote host
similar to simply writing data to a file
− Receiving data is similar to reading from a file

How do Sockets releate to Applications?

 Browsers, Webservers
− Use sockets to speak HTTP

 Mailservers, Mailclients
− Use sockets to speak SMTP/IMAP/POP3

 Peer 2 Peer Apps
− Use sockets to speak, e.g., Bittorrent

Socket programming
Goal: Learn how to build client/server applications that

communicate using sockets
Socket: Door between application process and end-end-transport

protocol

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Two socket types for two transport services:
• UDP: Unreliable datagram
• TCP: Reliable, byte stream-oriented

Socket programming

Application Example:
1. Client reads a line of characters (data) from its keyboard and

sends data to server
2. Server receives the data and converts characters to uppercase
3. Server sends modified data to client
4. Client receives modified data and displays line on its screen

Socket programming with UDP
 UDP: No “connection” between client & server
 No handshaking before sending data
 Sender explicitly attaches IP dst address and port # to each packet
 Receiver extracts src IP address and port # from received packet

 UDP: Transmitted data may be lost or received out-of-order
 Application viewpoint:

 UDP provides unreliable transfer of groups of bytes (“datagrams”)
between client and server

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

server (running on serverIP) client

Example app: UDP Client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(AF_INET,

SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message.encode(),

(serverName, serverPort))

modifiedMessage, serverAddress =
clientSocket.recvfrom(2048)

print modifiedMessage.decode()
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for server

get user keyboard
input

Attach server name, port to message;
send into socket

print out received string and close
socket

Example app: UDP Server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print (“The server is ready to receive”)
while True:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode().upper()
serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

create UDP socket

bind socket to local port number
12000

loop forever

Read from UDP socket into
message, getting client’s address
(client IP and port)

send upper case string back to this
client

Python UDPServer

Socket programming with TCP
Client must contact server
 Server process must first be running
 Server must have created socket

(door) that welcomes client’s contact
Client contacts server by:
 Creating TCP socket, specifying IP

address, port number of server
process

 When client creates socket: Client
TCP establishes connection to
server TCP

 When contacted by client, server TCP
creates new socket for server process
to communicate with that particular
client
• Allows server to talk with multiple

clients
• Source port numbers used to

distinguish clients

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

Application viewpoint:

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming request:

serverSocket = socket()

create socket,
connect to hostid, port=x

clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Example app: TCP Client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())
modifiedSentence = clientSocket.recv(1024)
print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

create TCP socket for server,
remote port 12000

No need to attach server name, port

Python TCPClient

Example app: TCP Server
Python TCPServer
from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while True:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024).decode()
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence.encode())
connectionSocket.close()

create TCP welcoming
socket

server begins listening for incoming
TCP requests

loop forever

server waits on accept()
for incoming requests, new socket
created on return

read bytes from socket (but not
address as in UDP)

close connection to this client (but not
welcoming socket)

Summary

 Application architectures
• Client-server
• P2P

 Application service requirements:
• Reliability, bandwidth, delay

 Internet transport service model
• Connection-oriented, reliable: TCP
• Unreliable, datagrams: UDP

Our study of network apps now complete!
 Specific protocols:

• HTTP
• SMTP, POP, IMAP
• DNS

 CDNs
 Socket programming:

TCP, UDP sockets

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

