TCP

Prof. Anja Feldmann, Ph.D.

(Based on slide deck of Computer Networking, 7t" ed., Jim Kurose and Keith Ross.)

TCP: Overview

* Reliable, in-order byte stream
* No “message boundaries”

* Connection-oriented
* Handshaking prior to data exchange

* Flow controlled
* Sender will not overwhelm receiver RFCs
* Point-to-Point
* One sender, one receiver

* Full-duplex data channel

* Bi-directional data flow in same
connection

mMPII
Data Networks Transport Layer: TCP

* 793,1122,1323, 2018, 2581

Outline

* Connection-oriented transport: TCP

* Quick refresher on TCP Segment structure
* Sequence numbers & Acknowledgements

e Reliable data transfer

* Flow control
* Connection management

* Congestion control
* Principles
* Mechanism

mMPII
Data Networks Transport Layer: TCP 3

Outline

* Connection-oriented transport: TCP

* Quick refresher on TCP Segment structure
* Sequence numbers & Acknowledgements

e Reliable data transfer

* Flow control
* Connection management

* Congestion control
* Principles
* Mechanism

MMPII
Data Networks Transport Layer: TCP 4

TCP: Segment Structure

Data Networks

A

32 bits

A\ 4

src. port dst. port

sequence number

acknowledgment number

HL | * N|clEjuaPRRSIF| receive window

checksum urgent pointer

options (variable length)

application data (variable length)

Transport Layer: TCP

TCP: Sequence Numbers and ACKs

outgoing segment from sender

Sequence numbers

source port # dest port #

* Byte stream “number” of first byte in __sequence number |
Segment’s data acl|<nowle|dgementrrx:;ber
checksum urg pointer
< window size
Acknowledgements N
* Sequence number of next byte expected ‘l"""" “"""""m
from Other Slde sender sequence number space
* Cumulative ACK
sent sent not- usable not
ACKed yet ACKed butnot usable

. (“in-flight”) yet sent
How receiver handles out-of-order

segments?
* TCP spec doesn’t say; up to implementer!

incoming segment to sender

source port # dest port #

sequence number

acknowledgement number

A rwnd

checksum urg pointer
Data Networks Transport Layer: TCP 6

TCP: Telnet Scenario

Host A Host B
3 E

User types ‘C’ | —~—__
Seq=42, ACK=79, data = ‘C’

| host ACKs receipt of ‘C’,
/ echoes back ‘C’

Seg=79, ACK=43, data = ‘C

—

\
Seq=43, ACK=80

—

host ACKs receipt of echoed ‘C’

Data Networks Transport Layer: TCP 7

TCP: Telnet Scenario

Host A Host B
3 E

User types ‘C’ | —~—__
Seg=42, ACK=79, data = ‘C’

| host ACKs receipt of ‘C’,
/ echoes back ‘C’

Seqg=79, ACK=43, data = ‘C’

—

\
Seq=43, ACK=80

—

host ACKs receipt of echoed ‘C’

Data Networks Transport Layer: TCP 8

TCP: Telnet Scenario

Host A Host B
3 E

User types ‘C’ | —~—__
Seq=42, ACK=79, data = ‘C’

| host ACKs receipt of ‘C’,
/ echoes back ‘C’

Seq=79, ACK=43, data = ‘C’

—

\
Seq=43, ACK=80

-

host ACKs receipt of echoed ‘C’

Data Networks Transport Layer: TCP 9

TCP: Telnet Scenario

Host A Host B
3 E

User types ‘C’ | —~—__
Seq=42, ACK=79, data = ‘C’

| host ACKs receipt of ‘C’,
/ echoes back ‘C’

Seq=79, ACK=43, data = ‘C’

—

\
Seq=43, ACK=80

-

host ACKs receipt of echoed ‘C’

Data Networks Transport Layer: TCP 10

TCP: Round Trip Time (RTT)

Host A Host B
pr— | ——
Seq=42, ACK=79, data = ‘C’
—
Sample of a _—
Round trip time (RTT) _——

Seg=79, ACK=43, data = ‘C

| —

\

Seq=43, ACK=80
—

Data Networks Transport Layer: TCP 11

TCP: Round Trip Time (RTT)

How long should the sender wait before retransmitting?
* Timeout: Length of timer before the sender resends the segment

Host A Host B
g | .
Seq=42, ACK=79, data = ‘C’
Round trip time (RTT) T
sample ™S -
Seq=79, ACK=43, data = ‘C’
— /
\
Seq=43, ACK=80
—

Data Networks Transport Layer: TCP 12

TCP: RTT & Timeout

How to set TCP timeout value? Host A
* Set it to a value longer than RTT; but g
RTT varies! I
B \Seq=42, ACK=79, data = ‘C’
.
Caveats’ Round trip time (RTT) — === -
] Seq=79, ACK=43, data = ‘C
* Too short: Premature timeout, | —
unnecessary retransmissions T~ sequa3, ACKE0
* Too long: Slow reaction to (segment) -
loss

mMPII
Data Networks Transport Layer: TCP 2-13

TCP: RTT Estimation

How should we estimate RTT?

* SampleRTT
* Measured time from segment transmission until ACK receipt

* Ignore retransmissions

SampleRTT will vary; want “smoother” estimated RTT
* Average several recent measurements (i.e., not just current SampleRTT)

Data Networks Transport Layer: TCP 14

TCP: RTT Estimation

EstimatedRTT = (1-a) * EstimatedRTT + o * SampleRTT

EXponential Weighted moving average RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
* Influence of past sample decreases
exponentially fast
e Typical value: o= 0.125
Ezoo N

150

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

—&—SampleRTT —=—Estimated RTT

Data Networks Transport Layer: TCP 15

TCP: Timeout

Timeout interval: EstimatedRTT plus “safety margin”

* Large variation in EstimatedRTT — larger safety margin
* Estimate SampleRTT deviation (DevRTT) from EstimatedRTT:

DevRTT = (1-f3) * DevRTT + 3 * |SampleRTT-EstimatedRTT]|
(typically, B =0.25)

Timeoutinterval = EstimatedRTT + 4*DevRTT
(“4*DevRTT”: Safety margin)

MMPII
Data Networks Transport Layer: TCP 16

Retransmission Ambiguity

A B A B
I RTO
Sample ret
A ran TN
RTT ~Dission

\ 4 \ 4 \ 4 \ 4

Karn’s RTT Estimator

* If a segment has been retransmitted:
* Do not count RTT sample on ACKs for this segment

» Keep backed off time-out for next packet
* Reuse RTT estimate only after one successful transmission

Data Networks Transport Layer: TCP 17

Outline

* Connection-oriented transport: TCP

* Quick refresher on TCP Segment structure
* Sequence numbers & Acknowledgements

e Reliable data transfer

* Flow control
* Connection management

* Congestion control
* Principles
* Mechanism

MMPII
Data Networks Transport Layer: TCP 18

TCP: Reliable Data Transfer (RDT)

* TCP creates RDT service on top
of IP” s unreliable service
* Pipelined segments

* Cumulative ACKs Let’s initially consider a
* Single retransmission timer simplified TCP sender:
* Ignore duplicate ACKs
* Retransmissions triggered by: * Ignore flow control,
* Timeout events congestion control

* Duplicate ACKs

mMPII
Data Networks Transport Layer: TCP 19

TCP Sender Events:

Data rcvd from app: Timeout:
* Create segment with sequence number . R.etransmit segment that caused
= Sequence number is byte-stream number of timeout .
first data byte in segment = Restart timer
= Start timer if not already running
* Think of timer as for oldest un-Ack’d
* Expiration interval: TimeOutinterval * If ACK acknowledges previously

un-ACK’d segments
* Update what is known to be ACK’d

e Start timer if there are still un-
ACK’d segments

Data Networks Transport Layer: TCP 20

TCP Sender (simplified)

data received from application above

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)

NextSegNum = NextSegNum + length(data)
‘\\ if (timer currently not running)
A N) start timer
NextSegNum = wait
InitialSeqNum for
SendBase = InitialSegNum even timeout
t

retransmit not-yet-acked segment
with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
/* SendBase-1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

INEET else stop timer
}

Data Networks Transport Layer: TCP 21

TCP: Retransmission Scenarios

Host A Host B Host A Host B
~— SendBase=92 ~—

Seq=92, 8 bytes of data Seq=92, 8 bytes of data

5 5 | Seq=100, 20 bytes of data
S ACK=100 o
ACK=100 /
ACK=120
Seq=92, 8 bytes of data Seq=92, 8
SendBase=100 bytes of data

~

/ SendBase=120
ACK=100
/ ACK=120

SendBase=120

\

\

IREF... Lost ACK scenario Premature timeout

Data Networks Transport Layer: TCP 22

TCP: Retransmission Scenarios

Seq=92, 8 bytes of data

\ \
Seq=100, 20 bytes o@ta<
ACK=100

X«

ACK=120

f—— timeout

Seq=120, 15 bytes of data

\

Cumulative ACK

Data Networks Transport Layer: TCP

23

TCP ACK Generation [RFC 1122, RFC 2581]

Event at receiver TCP receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments

segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Data Networks Transport Layer: TCP 24

TCP Fast Retransmit

* Time-out period often

relatively long:

- TCP fast retransmit —
If sender receives 3

* Long delay before resending ACKs for same data

lost packet

Detect lost segments via
duplicate ACKs.

* Sender often sends many
segments back-to-back

* If segment is lost, there will

(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
= Likely that unacked
segment lost, so don’ t

wait for timeout

likely be many duplicate ACKs.

Data Networks

Transport Layer: TCP

25

TCP Fast Retransmit

Fast retransmit after sender
receipt of triple duplicate ACK

MMPII

Data Networks

»l
»|

timeout

[Seq=92, 8 bytes of data

Seq=100, M
\X

ACK=100
ACK=100

X

\

ACK=100
ACK=100

""Seq=100, 20 bytes of data

\.

2\

Transport Layer: TCP

26

Outline

* Connection-oriented transport: TCP

* Quick refresher on TCP Segment structure
* Sequence numbers & Acknowledgements

e Reliable data transfer

* Up next: Flow control
* Up next: Connection management

* Congestion control

MMPII
Data Networks Transport Layer: TCP 27

	TCP
	TCP: Overview
	Outline
	Outline
	TCP: Segment Structure
	TCP: Sequence Numbers and ACKs
	TCP: Telnet Scenario
	TCP: Telnet Scenario
	TCP: Telnet Scenario
	TCP: Telnet Scenario
	TCP: Round Trip Time (RTT)
	TCP: Round Trip Time (RTT)
	TCP: RTT & Timeout
	TCP: RTT Estimation
	TCP: RTT Estimation
	TCP: Timeout
	Retransmission Ambiguity
	Outline
	TCP: Reliable Data Transfer (RDT)
	TCP Sender Events:
	TCP Sender (simplified)
	TCP: Retransmission Scenarios
	TCP: Retransmission Scenarios
	TCP ACK Generation [RFC 1122, RFC 2581]
	TCP Fast Retransmit
	TCP Fast Retransmit
	Outline

