TCP

Prof. Anja Feldmann, Ph.D.

(Based on slide deck of Computer Networking, 7t" ed., Jim Kurose and Keith Ross.)

Outline

* Connection-oriented transport: TCP

* Quick refresher on TCP Segment structure
* Sequence numbers & Acknowledgements

e Reliable data transfer

* Flow control
* Connection management

* Up next: Congestion control

MMPII
Data Networks Transport Layer: TCP 2

TCP Flow Control

application may
remove data from
TCP socket buffers.... — oo\ J — % —_____.

TCP socket
receiver buffers
N\

... slower than TCP

receiver is delivering ——— A
(sender is sending) o
code
i
— Flow control .
Receiver controls sender, so ot
sender won’ t overflow T]
receiver’ s buffer by : Py
transmitting too much, too fast from sender |
receiver protocol stack

Data Networks Transport Layer: TCP

TCP Flow Control

* Receiver “advertises” free buffer space

by including rwnd value in TCP header of to application process
receiver-to-sender segments r_h
* RcvBuffer size set via socket options RchuffeI e dens
(typical default is 4096 bytes) - ||
* Many operating systems auto-adjust rwnl ///////////////
RcvBuffer l v / f %

* Sender limits amount of unacked (“in-

flight””) data to receiver’s rwnd value TCP segment payloads

 Guarantees receive buffer will not
overflow

mMPII
Data Networks Transport Layer: TCP 4

Receiver-side buffering

TCP Flow Control

* TCP is a sliding window protocol
* For window size n, can send up to n bytes without receiving an acknowledgement

* When the data is acknowledged, the window slides forward

* Original TCP always sent entire window

* Congestion control now limits this via congestion window determined by the
sender! (network limited)

 If not, data rate is receiver [imited

* Silly window syndrome
* Too many small packets in flight
 Limit the # of smaller packets than MSS to one per RTT

mMPII
5

Window Flow Control

sender window

A
N

Sender Side Sent and acked

T

Next to be sent

Receive buffer

Receiver Side

[!
[} Ll

rcvr window

Data Networks Transport Layer: TCP

ldeal Window Size

Ideal size = delay * bandwidth (bw)
* Bandwidth-delay product (RTT * bottleneck bitrate)

* Window size < delay*bw = wasted bandwidth

* Window size > delay*bw =

* Queuing at intermediate routers = increased RTT

* Eventually packet loss

Outline

* Connection-oriented transport: TCP

* Quick refresher on TCP Segment structure
* Sequence numbers & Acknowledgements

e Reliable data transfer

* Flow control
* Connection management

* Congestion control
* Principles
* Mechanism

MMPII
Data Networks Transport Layer: TCP 8

* Agree to establish connection

Connection Management

Before exchanging data, sender/receiver “handshake”:

(each knowing the other willing to establish connection)
* Agree on connection parameters

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server, client

q network
el

V

Socket clientSocket =
newSocket ("hostname",
"port number") ;

Data Networks

Transport Layer: TCP

application

connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server, client

network

Socket connectionSocket =
welcomeSocket.accept() ;

Will 2-way handshake always
work in network?

c * Variable delays
Let’s talk

% EsTAB * Retransmitted messages

FSTAR #— 1 (e.g., req_conn(x)) due to
message loss

* Message reordering

«S ﬂ e Can’t “see” other side

choose
X \req_conn(ﬁL’
—® ESTAB

acc_conn(x)
ESTAB &

Data Networks Transport Layer: TCP 10

2-way handshake failure scenarios:

g

choose x

retransmit
req_conn(x)

ESTAB

client™

terminates

Data Net (n

\req_conn({L’

choose x

P EsTAB

acc_conn(x)

req_conn(x)

\

connection
x completes

o client!)

retransmit
req_conn(x)

ESTAB

retransmit

data(x+1)

server client

forgets x terminates
ESTAB

half open connection!

Transport Layer: TCP

acc_conn(x)

~data(x+1)

~ |

connection

x completes

\
req_conn(x)

data(x+1)

\ -4
req_conn(x
> ESTAB

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)

11

TCP 3-way Handshake

client state q ﬂ server state
LISTEN B

LISTEN

choose init seq num, x

! send TCP SYN msg [~_

SYNSENT SYNbit=1, Seg=x
choose init seq num, y
send TCP SYNACK v

/ msg, acking SYN SYN RCVD
SYNbit=1, Seg=y

ACKDbit=1; ACKnum=x+1
v received SYNACK(x)
ESTAB indicates server s live; /
send ACK for SYNACK; |~
this segment may contain ACKbit=1, ACKnum=y+1

client-to-server data)
T~ [received ACK(y)

indicates client is live M
ESTAB

MMPII

Data Networks Transport Layer: TCP

closed

Socket connectionSocket =
welcomeSocket.accept()

A

SYN(x) Socket clientSocket =
b4 newSocket(“hostname”,“port number”);

SYNACK(seq=y,ACKnum=x+1)
create new socket for SYN(seq=x)
communication back to client

[l

T T SYNACK(seg=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

MMPII

Data Networks Transport Layer: TCP 13

TCP: Closing a connection

* Client, server each close their side of connection
* Send TCP segment with FIN bit =1

* Respond to received FIN with ACK
* Onreceiving FIN, ACK can be combined with own FIN

* Simultaneous FIN exchanges can be handled
* Error handling via RST!

mMPII
Data Networks Transport Layer: TCP 14

client state

ESTAB ey
clientSocket.close()
’ longer FINbit=1, seq=x
FIN WAIT 1 canno lon =b =
B B send but can T
receive data —
! ACKDbit=1; ACKnum=x+1
FIN WAIT 2 wait for server |—"
- - close
b /
il FINDit=1, seq=y
TIMED WAIT .
. \
ACKDbit=1; ACKnum=y+1
timed wait ~——
for 2*max
segment lifetime
CLOSED l

MMPII

TCP: Closing a connection

|

=

Data Networks

Transport Layer: TCP

can still
send data

can no longer
send data

server state

ESTAB

CLOSE

LAST

v

CLOSED

WAIT

ACK

15

Outline

* Connection-oriented transport: TCP

* Quick refresher on TCP Segment structure
* Sequence numbers & Acknowledgements

e Reliable data transfer

* Flow control
* Connection management

* Up next: Congestion control

MMPII
Data Networks Transport Layer: TCP 16

	TCP
	Outline
	TCP Flow Control
	TCP Flow Control
	TCP Flow Control
	Window Flow Control
	Ideal Window Size
	Outline
	Connection Management
	Agreeing to establish a connection
	Agreeing to establish a connection
	TCP 3-way Handshake
	TCP 3-way Handshake: Finite State Machine
	TCP: Closing a connection
	TCP: Closing a connection
	Outline

