
Congestion Control
Prof. Anja Feldmann, Ph.D.

(Based on slide deck of Computer Networking, 7th ed., Jim Kurose and Keith Ross.)

Outline

Data Networks Congestion Control 2

• Connection-oriented transport: TCP
• Quick refresher on TCP Segment structure

• Sequence numbers & Acknowledgements

• Reliable data transfer
• Flow control
• Connection management

• Congestion control
• Principles
• Mechanism

TCP: Congestion Control

Data Networks Congestion Control 3

Motivated by ARPANET congestion collapse

Underlying design principle: Packet conservation
• At equilibrium, inject packet into network only when one is removed
• Basis for stability of physical systems

Why was this not working?
• Connection does not reach equilibrium
• Spurious retransmissions
• Resource limitations prevent equilibrium

TCP Congestion Control: Solutions

Data Networks Congestion Control 4

Reaching equilibrium
• Slow start

Eliminates spurious retransmissions
• Accurate RTO estimation
• Fast retransmit

Adapt to resource availability
• Congestion avoidance

TCP Congestion Control: Basics

Data Networks Congestion Control 5

Keep a congestion window, cwnd
• Denotes how much the network can absorb

Sender’s maximum window:
• Min. (advertised receiver window, cwnd)

Sender’s actual window:
• Max. window – unacknowledged segments

If we have large actual window, should we send data in one shot?
• No, use ACKs to clock sending new data

TCP: Congestion Window

Data Networks Congestion Control 6

• cwnd is dynamic; function of perceived network congestion

• Sender limits transmission: last-byte-sent – last-byte-ack’d ≤ cwnd

Se
qu

en
ce

 n
um

be
r s

pa
ce

Sent & ACK’d

Sent & not ACK’d
(in flight)

Usable & not sent

Unusable

Last byte acknowledged

Last byte sent

cw
nd

Sending rate?
roughly: send cwnd bytes, wait RTT for ACKs,
then send more bytes

rate ≈ cwnd/RTT (in bytes/s)

Data Networks Congestion Control 7

TCP: Slow start
When connection begins, increase rate
exponentially until first loss event:

• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing cwnd for every ACK

received

“slow start” misleading: initial rate is slow,
but it ramps up exponentially fast!

RT
T

Host A Host B

TCP Self-Clocking

Data Networks Congestion Control 8

PrPb

Ar

Ab

ReceiverSender

As

TCP: Detecting and reacting to loss

Data Networks Congestion Control 9

Loss indicated by timeout:
• cwnd set to 1 MSS;
• window then grows exponentially (as in slow start) to threshold,

then grows linearly

Loss indicated by 3 duplicate ACKs: TCP RENO
• dup ACKs indicate network capable of delivering some segments
• cwnd is cut in half window then grows linearly

TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

TCP Congestion Control: AIMD

Data Networks Congestion Control 10

Additive increase, multiplicative decrease (AIMD)
• Approach: Increase transmission rate (window size)

Probe for usable bandwidth, until loss occurs
• Additive increase: Increase cwnd by 1 MSS every RTT, until loss detected
• Multiplicative decrease: Cut cwnd in half after loss

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

co
ng

es
tio

n
w

in
do

w
 si

ze Saw-tooth behavior: Probing for bandwidth

TCP: From slow start to cong. avoidance

Data Networks Congestion Control 11

When should the exponential increase switch to linear?
• When cwnd gets to one half of its value before timeout.

Implementation:
• Variable ssthresh
• On a loss, ssthresh is set to one half of cwnd of the value

just before the loss event

TCP congestion control: Summary

Data Networks Congestion Control 12

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

𝛬𝛬
cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

TCP Fairness

Data Networks Congestion Control 13

Fairness goal: If N TCP sessions share same bottleneck link,
each should get 1/N of link capacity

TCP connection 1

bottleneck router
capacity R

TCP connection 2

Why is TCP fair? (Ideal Case)

Data Networks Congestion Control 14

Two competing sessions:
• Additive increase gives slope of 1, as throughout increases
• Multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Assumptions for TCP Fairness

Data Networks Congestion Control 15

• Window under consideration is large enough

• Same RTT

• Similar TCP parameters

• Enough data to send

• ...

Outline

Data Networks Congestion Control 16

• Connection-oriented transport: TCP
• Congestion control

• Principles
• Mechanism

• Up next: TCP variants

	Congestion Control
	Outline
	TCP: Congestion Control
	TCP Congestion Control: Solutions
	TCP Congestion Control: Basics
	TCP: Congestion Window
	TCP: Slow start
	TCP Self-Clocking
	TCP: Detecting and reacting to loss
	TCP Congestion Control: AIMD
	TCP: From slow start to cong. avoidance
	TCP congestion control: Summary
	TCP Fairness
	Why is TCP fair? (Ideal Case)
	Assumptions for TCP Fairness
	Outline

