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• Connection-oriented transport: TCP
• Quick refresher on TCP Segment structure

• Sequence numbers & Acknowledgements

• Reliable data transfer
• Flow control
• Connection management

• Congestion control
• Principles
• Mechanism



TCP: Congestion Control
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Motivated by ARPANET congestion collapse

Underlying design principle: Packet conservation
• At equilibrium, inject packet into network only when one is removed
• Basis for stability of physical systems

Why was this not working?
• Connection does not reach equilibrium
• Spurious retransmissions
• Resource limitations prevent equilibrium



TCP Congestion Control: Solutions

Data Networks Congestion Control 4

Reaching equilibrium
• Slow start

Eliminates spurious retransmissions
• Accurate RTO estimation
• Fast retransmit

Adapt to resource availability
• Congestion avoidance



TCP Congestion Control: Basics
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Keep a congestion window, cwnd
• Denotes how much the network can absorb

Sender’s maximum window:
• Min. (advertised receiver window, cwnd)

Sender’s actual window:
• Max. window – unacknowledged segments

If we have large actual window, should we send data in one shot?
• No, use ACKs to clock sending new data



TCP: Congestion Window
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• cwnd is dynamic; function of perceived network congestion

• Sender limits transmission: last-byte-sent – last-byte-ack’d ≤ cwnd
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Sending rate?
roughly: send cwnd bytes, wait RTT for ACKs, 
then send more bytes

rate ≈ cwnd/RTT   (in bytes/s)
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TCP: Slow start
When connection begins, increase rate 
exponentially until first loss event:

• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing cwnd for every ACK 

received

“slow start” misleading: initial rate is slow, 
but it ramps up exponentially fast!
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TCP Self-Clocking
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TCP: Detecting and reacting to loss
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Loss indicated by timeout:
• cwnd set to 1 MSS; 
• window then grows exponentially (as in slow start) to threshold, 

then grows linearly

Loss indicated by 3 duplicate ACKs: TCP RENO
• dup ACKs indicate network capable of  delivering some segments 
• cwnd is cut in half window then grows linearly

TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)



TCP Congestion Control: AIMD
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Additive increase, multiplicative decrease (AIMD)
• Approach: Increase transmission rate (window size)

Probe for usable bandwidth, until loss occurs
• Additive increase: Increase  cwnd by 1 MSS every RTT, until loss detected
• Multiplicative decrease: Cut cwnd in half after loss 
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TCP: From slow start to cong. avoidance
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When should the exponential increase switch to linear? 
• When cwnd gets to one half of its value before timeout.

Implementation:
• Variable ssthresh
• On a loss, ssthresh is set to one half of cwnd of the value 

just before the loss event



TCP congestion control: Summary
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timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 
start

timeout
ssthresh = cwnd/2 
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

𝛬𝛬
cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!



TCP Fairness

Data Networks Congestion Control 13

Fairness goal: If N TCP sessions share same bottleneck link, 
each should get 1/N of link capacity

TCP connection 1

bottleneck router 
capacity R

TCP connection 2



Why is TCP fair? (Ideal Case)
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Two competing sessions:
• Additive increase gives slope of 1, as throughout increases
• Multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2



Assumptions for TCP Fairness
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• Window under consideration is large enough

• Same RTT

• Similar TCP parameters

• Enough data to send

• ...



Outline
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• Connection-oriented transport: TCP
• Congestion control

• Principles
• Mechanism

• Up next: TCP variants
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