

Routing: BGP Advanced topics

Prof. Anja Feldmann, Ph.D. Balakrishnan Chandrasekaran, Ph.D.

- Same routing protocol as BGP, different application
- iBGP should be used when AS_PATH information must remain intact between multiple eBGP peers
- All iBGP peers must be fully meshed, logically; An iBGP peer will not advertise a route learned by one iBGP peer to another iBGP peer (readvertisement restriction: To prevent looping)

iBGP peers must be fully meshed

- *N* border routers means
 - N(N-1)/2 peering sessions
 - this does not scale
- Currently three solutions:
 - Break an AS up into smaller
 - Autonomous Systems
 - Route Reflectors
 - Confederations

iBGP peers do not announce routes received via iBGP Data Networks

Route reflectors

م12

Confederations

To the global internet, this looks just like AS100

Link failures

- Two types of link failures:
 - Failure on an E-BGP link
 - Failure on an I-BGP Link
- These failures are completely different in BGP
- Why?

Failure of an E-BGP link

- If the link R1-R2 goes down
 - The TCP connection breaks
 - BGP routes are removed
- This is the desired behavior

Failure on an I-BGP link

- Link R1-R2 down ⇒ R1 and R2 can still exchange traffic
- The indirect path through R3 must be used
- E-BGP and I-BGP use different conventions with respect to TCP endpoints
 - E-BGP: no multihop I-BGP: multihop OK

BGP is not guaranteed to converge!

- BGP is not guaranteed to converge to a stable routing
- Policy inconsistencies can lead to "livelock" protocol oscillations
- Goal:
 - Design a simple, tractable, and complete model of BGP modeling
 - Example application:
 - Sufficient condition to guarantee convergence

BGP can have multiple solutions **First solution** Second solution DISAGREE

BGP routing policies for DISAGREE

BGP routing policies for DISAGREE (2)

Assume AS1 and AS2 use "neighbor send-community" command

Multiple solutions => "Route Triggering"

Data Networks

BAD GADGET: Always diverges

See "Persistent Route Oscillations in Inter-domain Routing" by K. Varadhan, R. Govindan, and D. Estrin. ISI report, 1996

BAD GADGET

Data Networks

Bad Gadget: No solution

Bad Gadget: No solution

How to ensure no policy conflicts

Strawman Proposal: Perform Global Policy Check

- Require each AS to publish its policies
- Detect and resolve conflicts

Data Networks

Problems

- ASes typically unwilling to reveal policies
- Checking for convergence is NP-complete
- Failures may still cause oscillations

Think globally, act locally

- Key features of a good solution
 - Safety: Guaranteed convergence
 - Expressiveness: Allow diverse policies for each AS
 - Autonomy: Do not require revelation/coordination
 - Backwards-compatibility: No changes to BGP
- Local restrictions on configuration semantics
 - Ranking
 - Filtering

Gao and Rexford Scheme

Gao & Rexford, "Stable Internet Routing without Global Coordination", IEEE/ACM ToN, 2001

- Permit only two business arrangements
 - Customer-provider
 - Peering
- Constrain both filtering and ranking based on these arrangements to guarantee safety
- Surprising result: These arrangements correspond to today's most common behavior

Signs of routing instability

- Monitored BGP messages at major exchanges
- Orders of magnitude more updates than expected
 - Bulk: Duplicate withdrawals
 - Stateless implementation of BGP did not keep track of information passed to peers
 - Impact of few implementations
 - Strong frequency (30/60 sec) components
 - Interaction with other local routing/links etc.

Data Networks

<s

BGP summary

- Neighbors
 - discovery
 - maintenance
- Database
 - granularity
 - maintenance
 - synchronization
- Routing table
 - metric
 - calculation

incremental updates & filter full exchange

prefix

policies

route selection

Policy:

- Inter-AS: admin wants control over how its traffic routed, who routes through its net.
- Intra-AS: single admin, so no policy decisions needed
 Scale:
- Hierarchical routing saves table size, reduced update traffic

Performance:

- Intra-AS: can focus on performance
- Inter-AS: policy may dominate over performance

BGP: AS types and policies

- **Providers:** Offer connectivity to direct customer offer transit to other ISPs
- **Customers:** Buy connectivity from providers
- **Peers:** Exchange customers traffic at no cost
- Siblings: others

	Own routes	Customer's routes	Sibling's routes	Provider's routes	Peer's routes
Exporting to provider	\checkmark	\checkmark	\checkmark	X	X
Exporting to customer	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Exporting to peer	\checkmark	\checkmark	\checkmark	X	X

Policy:

- Inter-AS: Admins want control over how its traffic is routed & who routes its net.
- Intra-AS: Single admin, so no policy decisions needed

Performance:

- Intra-AS: Can focus on performance
- Inter-AS: Policy may dominate over performance

