Software-defined Networking
(SDN)
Part [

Prof. Anja Feldmann, Ph.D.
Balakrishnan Chandrasekaran, Ph.D.

Savvas Zannettou, Ph.D.

Controller: Network OS

Application
Network OS

API

Switch
Switch

Southbound API

e o
P

[http://www.cs.princeton.edu/courses/archive/fall13/cos597E/docs/03API.pdf]

SDN

Controller: Network OS

I

The controller or the application can

Application generate the command.

|7 Command

Here’s what you do ...

Event
|7Somethinghappened... L .

witch

_— -

Switch

FS

API Southbound API

N

/ \ Switch/
[

SDN

[http://www.cs.princeton.edu/courses/archive/fall13/cos597E/docs/03API.pdf]

Controller: Network OS

OpenFlow v1.0

Application
Command " S
|7 OFPacketOut F
R ¥ APl | Southbound API
Inbound packet L / Switch
1 Flow OFPacketin -
src. MAC | dst. MAC src. IP dst. IP src. port | dst. port action

Inbound packet I NS\MtCh/
coe coe oo oo P oo oo \

[http://www.cs.princeton.edu/courses/archive/fall13/cos597E/docs/03API.pdf]

SDN 4

OpenFlow

* Protocol that provides access to the forwarding plane of
network switches

* Standardized by Open Networking Foundation
* Current version: 1.5.1

* OpenFlow is considered an ”enabler” of SDN

mMPII
SDN 5

OpenFlow specification overview

* The OpenFlow protocol supports three message types:

* Controller-to-switch: Initiated by the controller and are used to manage
switches (e.g., read-state, modify-state, etc.)

* Asynchronous: Initiated by the switch and are used to update the
controller on events and changes on the switch state (packet-in, flow-
removed, port-status, error)

* Symmetric: Initiated by either the switch or the controller and sent
without solicitation (e.g., hello, echo)

mMPII
SDN 6

OpenFlow messages

OFPacketin

* Asynchronous message

* When first packet of a flow (with no matching rule in the flow table) arrives
at an OpenFlow switch

* Attributes: Details to help the controller/application decide

* Switch ID, incoming port, headers, ...

mMPII
SDN 7

OpenFlow messages

OFPacketOut

* Controller-to-Switch message

* Instruction for the switch on what to do with the packet
* What to do? Forward, Drop

 Attributes: Details to help the switch carry out the action
* Action, buffer ID, ...

mMPII
SDN 8

Controller: Application example

OFPacketin

* Assume
* Switch ID: A, incoming port: 1, headers, ...

OFPacketOut

* Assume
* Switch ID: A, outgoing port: *, headers, ...

Application?
* Hub

mml’ll
SDN

SDN Application: It can’t be that simple. ...

Well, here’s an example implementation

Create packet out message

msg = of.ofp packet out()

Use the incoming packet as the data for the packet out
msg.buffer id = event.ofp.buffer id

Set the in port so that the switch knows

msg.in port = packet in.in port

Add an action to send to the specified port
msg.match = of.ofp match.from packet (packet)

action = of.ofp action output(port = of.OFPP FLOOD)
msg.actions.append(action)

Send message to switch

self.connection.send(msgqg)

mMPII

SDN

Flow entries

Flow entries

* Rather than react to every packet from the switch, we can install a flow
entry that matches on certain packet headers

* Flow entries are installed by the controller and maintained in the flow table

* Flow entries are generated by applications (either bundled with the controller or
running on top of the controller)

SDN

11

Anatomy of a flow table entry

Rule Action

Packet + byte counters

1. Forward packet to port(s)

2. Encapsulate and forward to controller
3. Drop packet

4. Send to normal processing pipeline

5. Modify field (e.g., ToS, VLAN ID)

6. ...

Switch | MAC MAC Eth VLAN IP IP IP TCP TCP
Port src dst type ID Src Dst Prot | sport | dport

+ mask

SDN

Flow entry messages

OFFlowAdd

* Add a new entry that matches on certain headers (or attributes)

e.g., all packets from source IP 1.2.3.4 and destination IP 4.3.2.1 (regardless of other attributes) to be
dropped (Think, firewall!)

OFFlowMod

* Modify an existing flow entry in the switch (e.g., change the above entry to not drop such
packets)

OFFlowDelete
* Remove an existing flow entry in the switch

OFFlowRemoved
* Tells a controller that a flow entry was removed (via timeout)

SDN 3

OpenFlow statistics messages

OFStatisticsRequest

* The controller instructs a switch to reply with an OFStatisticsResponse containing some
statistics on traffic received by this switch

* How? Switches have counters/meters to gather metrics!

OFStatisticsResponse
* Statistics on traffic observed by the switch (could be useful for traffic engineering)

SDN "

Flow entry expiration

* Each flow entry can have a soft (idle) and hard timeout
* They define when a flow entry expires

e |dle timeout

* Flow entry is removed, If no packet has matched the flow entry in the last “idle timeout”
seconds

e Hard timeout

* Flow entry is removed, if it has been “hard timeout” seconds since the flow entry was
inserted

* If both timeouts are set to zero, the flow entry will never expire (the entry can still get
removed by the controller!)

SDN 5

SDN Dimensions: Flow insertion approaches

* Reactive flow insertion

First packet of the flow is sent to the controller

Controller installs flow entries on the switches

» Subsequent packets (of the same flow) match the flow entry

» Setup time overhead, loss of connection between controller/switch affects the network

* Proactive flow insertion
* Controller pre-populates flow entries on the switches
* Packets that do not match any flow entry are dropped

* Hybrid flow insertion
* Controller pre-populates flow entries on the switches
* Switches consult the controller for flows that do not match any entry

SDN 16

SDN Dimensions: Granularity of flow rules

Microflow Aggregated rules (wildcards)y
* One flow entry matches * One flow entry matches a
one flow group of flows
* Precision-oriented * Scalability-oriented
* Provides counters/metrics * Minimizes overhead by
for individual flows grouping flows

* Allows/denies individual
flows (access control)

INET.... Source: https://courses.cs.duke.edu/fall14/compsci590.4/lectures.html
SDN

SDN Controller: Event-driven paradigm

* Switches generate events and send it to controller

* Application(s) responds to the events
* Controller has (or interacts with) one or more applications

* Application subscribes to (a subset of) events

* When application receives an event, it responds with an output
(command)

e Controller sends this command to the switch

SDN

19

SDN Controllers

* Many exist!
*« NOX (C++)
« POX (Python)
* Floodlight (Java)
* OpenDaylight (Java)
* Onix
* ONOS
* Pyretic

* Different Implementations offer different services, applications, benefits, ...

mMPII
SDN 20

SDN application examples

* Different applications can install flow entries that perform different actions for

different matches

— Flow Table

src. MAC

dst. MAC

src. IP

dst. IP

src. port

dst. port

dction

SDN

21

SDN application examples

* Different applications can install flow entries that perform different actions for
different matches

-| Flow Table
src. MAC | dst. MAC src. IP dst. IP src. port | dst. port action
* H port 8 Switching
X Y 8o port 2
Routing
X Y * 443 port 4
X Y * 22 drop Firewall

SDN 22

SDN Challenges

With great power comes...

... many great challenges!

* SDN offers network-wide visibility, (programmable) control over switches, and
a simple data-plane abstraction. Now, ...
* Ensure that SDN is available, fault-tolerant, and secure

* Need to map policies to the low-level API
* Ensure traffic from network A always is screened/scrubbed

* Rules for identifying traffic from A, direct them to scrubber, ensure that this rule is always
applied; how to ensure that the implementation matches policy?

* Need to compose modular applications, debug, and verify
« Diff. apps for load balancing, routing, traffic engineering, scrubbing (firewall)
* How to compose or combine? How to debug and verify?

SDN 25

SDN controller availability

SDN Controller/Applications

= ——

mMPII
SDN

SDN controller availability

SDN Controller/Applications

= ——

%? ==
& <Y o
= 7 —
= =
I 5

=" = —

SDN controller availability

* “Divide and conquer’ approach
* How many controllers?

* How do you assign switches to controllers (e.g., reduce processing
time)?
* How to ensure consistency across controllers?

g SDN Controller/Applications)

SDN Controller/Applications

SDN Controller/Applications

SDN 28

SDN fault tolerance

The network survives failures or bugs in code
for network devices

Bugs in the SDN controller or applications
affect the entire network and can take the
entire network down

SDN Controli: 3pplications

= &’}9’——@

https://courses.cs.duke.edu/fall14/compsci590.4/notes/F14_Class1.pptx

SDN 29

SDN security

* If the SDN controller or applications get
If one device in traditional networking compromised, the network is not safe
paradigm is compromised the network may

still be safe

SDN Conr roll :r/A >plications

L;"-\ ’;/ —Jf

https://courses.cs.duke.edu/fall14/compsci590.4/notes/F14_Class1.pptx

SDN 30

SDN security

* If the SDN controller or applications get
compromised, the network is not safe

* Communication channel between
controller/switches can be attacked!

If one device in traditional networking
paradigm is compromised the network may
still be safe

SDN Controller/Applications

Denial of service
attack on the
channel

';“—\ /”Q | '-;"‘_ ;-/’;‘

https://courses.cs.duke.edu/fall14/compsci590.4/notes/F14_Class1.pptx

SDN 31

Policies/Intents

How to specify policy/intent?

* Policies may constitute rules across...
* many switches
* multiple applications

How to handle policy changes?

* Applying policies without disrupting traffic in the network is hard
* May have to change rules across many switches
* ... while handling traffic in the network (cannot stop traffic for changes: impractical!)

How to realize policies?
* Hard for developers to handle all the complexities
* Need abstractions to simplify development

SDN 32

SDN debugging

When disaster strikes, how to debug?

* Debugging network applications is hard!
* Inputs to the SDN application are events/packets from the data plane
* Outputs are policies spread across the entire network!

* Bugs can appear anywhere in the SDN stack
* SDN controller, Applications, Switches (software and/or hardware)

SDN 33

SDN verification

How to verify that policies are implemented correctly?

* Leverage network invariants

* Invariant?
* Never changing; a property that always holds!
* No route loops, no blackholes

 Specify the invariants, for instance, to the controller
* When the output of an application violates an invariant, flag it!
 State of the art research efforts: Header space analysis, Veriflow, ...

SDN 34

SDN verification

How to verify that rules installed are followed?

* Network is a shared substrate
* Imagine an administrator manually entering/modifying/deleting a rule on a switch
* Verifying that data plane performs exactly as instructed by the control plane is hard!

* Prof. Anja Feldmann’s group currently has an ongoing project in this space.

SDN 35

Summary

* Data and control plane separation
* OpenFlow

* Controllers and applications

* Challenges

mMPII
SDN 37

