
Software-defined Networking
(SDN)
Part II

Prof. Anja Feldmann, Ph.D.

Balakrishnan Chandrasekaran, Ph.D.
Savvas Zannettou, Ph.D.

Controller: Network OS

SDN 2

[http://www.cs.princeton.edu/courses/archive/fall13/cos597E/docs/03API.pdf]

Southbound API

Controller: Network OS

SDN 3

[http://www.cs.princeton.edu/courses/archive/fall13/cos597E/docs/03API.pdf]

Southbound API

Something happened …

Event

Here’s what you do …

Command

The controller or the application can
generate the command.

src. MAC dst. MAC src. IP dst. IP src. port dst. port

… … … … … …

… … … … … …

Flow Table

action

…

…

Controller: Network OS

[http://www.cs.princeton.edu/courses/archive/fall13/cos597E/docs/03API.pdf]

Southbound API

OpenFlow v1.0

OFPacketOut

Command

OFPacketIn

EventInbound packet

Inbound packetInbound packetInbound packet

SDN 4

OpenFlow

SDN 5

• Protocol that provides access to the forwarding plane of
network switches

• Standardized by Open Networking Foundation
• Current version: 1.5.1

• OpenFlow is considered an ”enabler” of SDN

OpenFlow specification overview

SDN 6

• The OpenFlow protocol supports three message types:

• Controller-to-switch: Initiated by the controller and are used to manage
switches (e.g., read-state, modify-state, etc.)

• Asynchronous: Initiated by the switch and are used to update the
controller on events and changes on the switch state (packet-in, flow-
removed, port-status, error)

• Symmetric: Initiated by either the switch or the controller and sent
without solicitation (e.g., hello, echo)

OpenFlow messages

SDN 7

OFPacketIn
• Asynchronous message
• When first packet of a flow (with no matching rule in the flow table) arrives

at an OpenFlow switch
• Attributes: Details to help the controller/application decide

• Switch ID, incoming port, headers, …

OpenFlow messages

SDN 8

OFPacketOut
• Controller-to-Switch message
• Instruction for the switch on what to do with the packet

• What to do? Forward, Drop

• Attributes: Details to help the switch carry out the action
• Action, buffer ID, …

Controller: Application example

SDN 9

OFPacketIn
• Assume

• Switch ID: A, incoming port: 1, headers, …

OFPacketOut
• Assume

• Switch ID: A, outgoing port: *, headers, …

Application?
• Hub

SDN Application: It can’t be that simple …

SDN 10

Well, here’s an example implementation

Create packet out message

msg = of.ofp_packet_out()

Use the incoming packet as the data for the packet out

msg.buffer_id = event.ofp.buffer_id

Set the in_port so that the switch knows

msg.in_port = packet_in.in_port

Add an action to send to the specified port

msg.match = of.ofp_match.from_packet(packet)

action = of.ofp_action_output(port = of.OFPP_FLOOD)

msg.actions.append(action)

Send message to switch

self.connection.send(msg)

Flow entries

SDN 11

Flow entries
• Rather than react to every packet from the switch, we can install a flow

entry that matches on certain packet headers

• Flow entries are installed by the controller and maintained in the flow table
• Flow entries are generated by applications (either bundled with the controller or

running on top of the controller)

Anatomy of a flow table entry

SDN 12

Rule Action Stats

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

+ mask

Packet + byte counters

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline
5. Modify field (e.g., ToS, VLAN ID)
6. …

Priority Timeout

Order to select entry

When to remove entry

Flow entry messages

SDN 13

OFFlowAdd
• Add a new entry that matches on certain headers (or attributes)

e.g., all packets from source IP 1.2.3.4 and destination IP 4.3.2.1 (regardless of other attributes) to be
dropped (Think, firewall!)

OFFlowMod
• Modify an existing flow entry in the switch (e.g., change the above entry to not drop such

packets)

OFFlowDelete
• Remove an existing flow entry in the switch

OFFlowRemoved
• Tells a controller that a flow entry was removed (via timeout)

OpenFlow statistics messages

SDN 14

OFStatisticsRequest
• The controller instructs a switch to reply with an OFStatisticsResponse containing some

statistics on traffic received by this switch
• How? Switches have counters/meters to gather metrics!

OFStatisticsResponse
• Statistics on traffic observed by the switch (could be useful for traffic engineering)

Flow entry expiration

SDN 15

• Each flow entry can have a soft (idle) and hard timeout
• They define when a flow entry expires

• Idle timeout
• Flow entry is removed, If no packet has matched the flow entry in the last “idle timeout”

seconds

• Hard timeout
• Flow entry is removed, if it has been “hard timeout” seconds since the flow entry was

inserted

• If both timeouts are set to zero, the flow entry will never expire (the entry can still get
removed by the controller!)

SDN Dimensions: Flow insertion approaches

SDN 16

• Reactive flow insertion
• First packet of the flow is sent to the controller
• Controller installs flow entries on the switches
• Subsequent packets (of the same flow) match the flow entry
• Setup time overhead, loss of connection between controller/switch affects the network

• Proactive flow insertion
• Controller pre-populates flow entries on the switches
• Packets that do not match any flow entry are dropped

• Hybrid flow insertion
• Controller pre-populates flow entries on the switches
• Switches consult the controller for flows that do not match any entry

SDN Dimensions: Granularity of flow rules

SDN 17

Microflow
• One flow entry matches

one flow

• Precision-oriented
• Provides counters/metrics

for individual flows
• Allows/denies individual

flows (access control)

Aggregated rules (wildcards)
• One flow entry matches a

group of flows

• Scalability-oriented
• Minimizes overhead by

grouping flows

Source: https://courses.cs.duke.edu/fall14/compsci590.4/lectures.html

SDN Controller: Event-driven paradigm

SDN 19

• Switches generate events and send it to controller

• Application(s) responds to the events
• Controller has (or interacts with) one or more applications

• Application subscribes to (a subset of) events
• When application receives an event, it responds with an output

(command)
• Controller sends this command to the switch

SDN Controllers

SDN 20

• Many exist!
• NOX (C++)
• POX (Python)
• Floodlight (Java)
• OpenDaylight (Java)
• Onix
• ONOS
• Pyretic

• Different Implementations offer different services, applications, benefits, …

SDN application examples

SDN 21

• Different applications can install flow entries that perform different actions for
different matches

Flow Table

src. MAC dst. MAC src. IP dst. IP src. port dst. port action

… … … … … … …

… … … … … … …

SDN application examples

SDN 22

• Different applications can install flow entries that perform different actions for
different matches

Flow Table

src. MAC dst. MAC src. IP dst. IP src. port dst. port action

* H … … … … port 8

… … X Y … 80 port 2

… … X Y * 443 port 4

… … X Y * 22 drop

Switching

Routing

Firewall

SDN Challenges

SDN 24

With great power comes …

SDN 25

… many great challenges!

• SDN offers network-wide visibility, (programmable) control over switches, and
a simple data-plane abstraction. Now, …
• Ensure that SDN is available, fault-tolerant, and secure

• Need to map policies to the low-level API
• Ensure traffic from network A always is screened/scrubbed
• Rules for identifying traffic from A, direct them to scrubber, ensure that this rule is always

applied; how to ensure that the implementation matches policy?

• Need to compose modular applications, debug, and verify
• Diff. apps for load balancing, routing, traffic engineering, scrubbing (firewall)
• How to compose or combine? How to debug and verify?

SDN controller availability

SDN 26

SDN Controller/Applications

SDN controller availability

SDN 27

SDN Controller/Applications

SDN controller availability

SDN 28

• “Divide and conquer” approach
• How many controllers?
• How do you assign switches to controllers (e.g., reduce processing

time)?
• How to ensure consistency across controllers?

SDN Controller/Applications SDN Controller/Applications

SDN Controller/Applications

SDN fault tolerance

SDN 29

The network survives failures or bugs in code
for network devices

SDN Controller/Applications

Bugs in the SDN controller or applications
affect the entire network and can take the
entire network down

https://courses.cs.duke.edu/fall14/compsci590.4/notes/F14_Class1.pptx

SDN security

SDN 30

If one device in traditional networking
paradigm is compromised the network may
still be safe

SDN Controller/Applications

• If the SDN controller or applications get
compromised, the network is not safe

https://courses.cs.duke.edu/fall14/compsci590.4/notes/F14_Class1.pptx

SDN security

SDN 31

If one device in traditional networking
paradigm is compromised the network may
still be safe

SDN Controller/Applications

• If the SDN controller or applications get
compromised, the network is not safe

• Communication channel between
controller/switches can be attacked!

https://courses.cs.duke.edu/fall14/compsci590.4/notes/F14_Class1.pptx

Denial of service
attack on the
channel

Policies/Intents

SDN 32

How to specify policy/intent?
• Policies may constitute rules across …

• many switches
• multiple applications

How to handle policy changes?
• Applying policies without disrupting traffic in the network is hard

• May have to change rules across many switches
• … while handling traffic in the network (cannot stop traffic for changes: impractical!)

How to realize policies?
• Hard for developers to handle all the complexities
• Need abstractions to simplify development

SDN debugging

SDN 33

When disaster strikes, how to debug?

• Debugging network applications is hard!
• Inputs to the SDN application are events/packets from the data plane
• Outputs are policies spread across the entire network!

• Bugs can appear anywhere in the SDN stack
• SDN controller, Applications, Switches (software and/or hardware)

SDN verification

SDN 34

How to verify that policies are implemented correctly?

• Leverage network invariants
• Invariant?

• Never changing; a property that always holds!
• No route loops, no blackholes

• Specify the invariants, for instance, to the controller
• When the output of an application violates an invariant, flag it!
• State of the art research efforts: Header space analysis, Veriflow, …

SDN verification

SDN 35

How to verify that rules installed are followed?

• Network is a shared substrate
• Imagine an administrator manually entering/modifying/deleting a rule on a switch
• Verifying that data plane performs exactly as instructed by the control plane is hard!

• Prof. Anja Feldmann’s group currently has an ongoing project in this space.

Summary

SDN 37

• Data and control plane separation
• OpenFlow
• Controllers and applications
• Challenges

