

Data Networks Signaling

Prof. Anja Feldmann, Ph.D.

Design Principles

Goals:

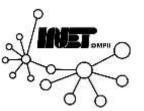
- Identify, study common architectural components, protocol mechanisms, approaches do we find in network architectures?
- Synthesis: Big picture

Design Principles:

- Separation of data, control
- Hard state versus soft state
- Randomization
- Indirection
- Network virtualization / Overlays
- Resource sharing
- Design for scale

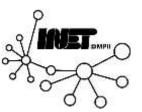
Signaling: Exchange of messages among network entities to enable (provide service) to connection/call

Before, during, after connection/call


- Call setup and teardown
- Call maintenance
- Measurement, billing

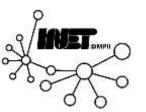
Between

- End-user <-> network
- End-user <-> end-user
- Network element <-> network element

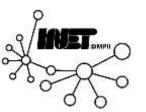


"... exchange information between network components required to provide and maintain service"

"... exchange information between network components required to provide and maintain service"


• Two principles:

"... exchange information between network components required to provide and maintain service"


- Two principles:
 - Hard state: No periodic maintenance/explicit teardown

"... exchange information between network components required to provide and maintain service"

- Two principles:
 - Hard state: No periodic maintenance/explicit teardown
 - Soft state: Expires timers

"... exchange information between network components required to provide and maintain service"

• Two principles:

- Hard state: No periodic maintenance/explicit teardown
- Soft state: Expires timers

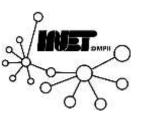
Huge debate

"... exchange information between network components required to provide and maintain service"

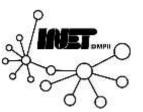
• Two principles:

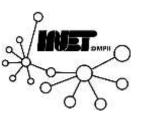
- Hard state: No periodic maintenance/explicit teardown
- Soft state: Expires timers

Huge debate More after signaling

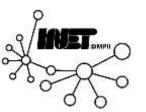

Signaling examples

- Internet
 - TCP handshake (connection setup/teardown)
 - RSVP (Resource Reservation Protocol, e.g., for QoS)
 - SIP (Session Initiation Protocol for Internet telephony)
- Telephone network
 - SS7 (Signaling System no. 7)



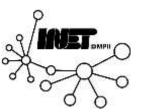


connectionless (stateless) forwarding by IP routers


connectionless (stateless) forwarding + best effort by IP routers

connectionless (stateless) forwarding + by IP routers

best effort service no network signaling protocols in initial IP design


connectionless (stateless) forwarding by IP routers

best effort service

+

no network signaling protocols in initial IP design

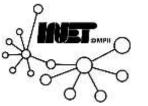
• Yet: Transport protocols need state and variable initialization



connectionless (stateless) forwarding + by IP routers

best effort service no network signaling protocols in initial IP design

Yet: Transport protocols need state and variable initialization
E.g.: Transport Control Protocol [RFCs 793, 1122, 1323, 2018, 2581]


- Recall: TCP sender, rcvr setup "connection" before exchanging data
- Initialize TCP variables:
 - Seq. #s
 - Buffers, flow control info (e.g., RcvWindow)
 - MSS and other options

Data Networks

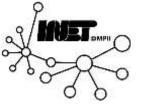
- Client: Connection initiator; Server: Contacted by client
 - Three-way handshake
 - Simultaneous open
 - TCP Half-Close (four-way handshake)

Signaling

• Connection aborts via RSTs

Three way handshake:

- Step 1: Client sends TCP SYN control segment to server
 - Specifies initial seq #
 - Specifies initial window #
- Step 2: Server receives SYN, replies with SYNACK
 - ACKs received SYN
 - Allocates buffers
 - Specifies server \rightarrow receiver initial seq. #
 - Specifies initial window #
- Step 3: Client receives SYNACK

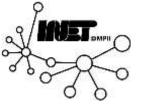


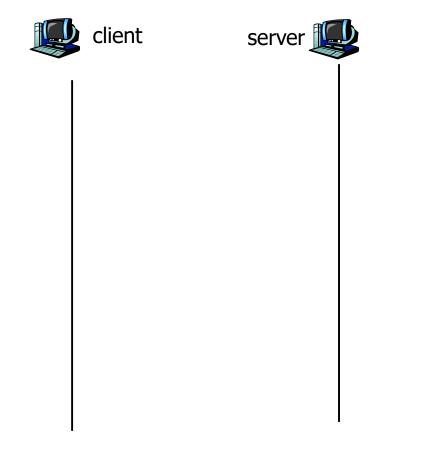
<u>Closing a connection:</u>

Client closes socket:
 clientSocket.close();

Step 1: Client sends TCP FIN control segment to server

Step 2: Server receives FIN, replies with ACK. Closes connection, sends FIN.

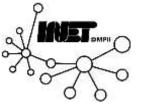


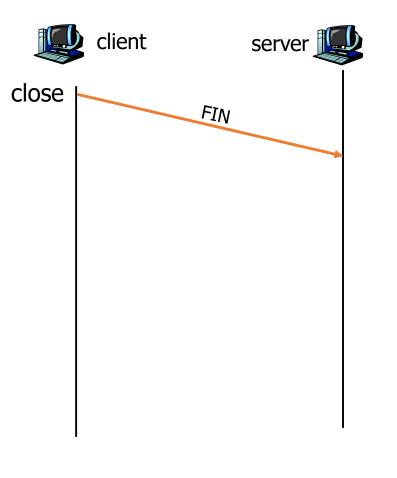

Closing a connection:

Client closes socket:
 clientSocket.close();

Step 1: Client sends TCP FIN control segment to server

Step 2: Server receives FIN, replies with ACK. Closes connection, sends FIN.

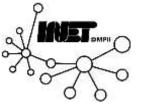

Closing a connection:

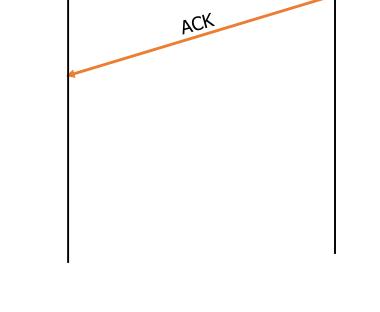

Client closes socket:
 clientSocket.close();

Step 1: Client sends TCP FIN control segment to server

Step 2: Server receives FIN, replies with ACK. Closes connection, sends FIN.

Data Networks




Closing a connection:

Client closes socket:
 clientSocket.close();

Step 1: Client sends TCP FIN control segment to server

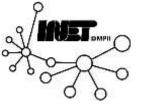
<u>Step 2:</u> Server receives FIN, replies with ACK. Closes connection, sends FIN.

FIN

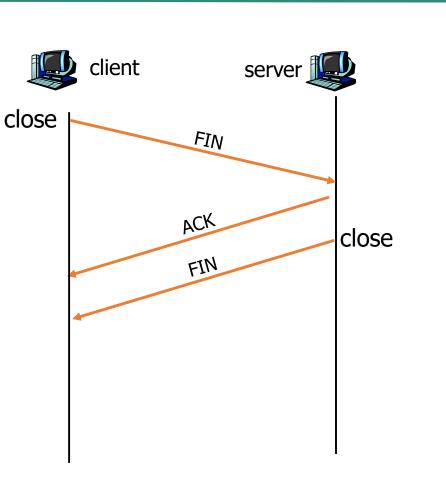
server

client

close

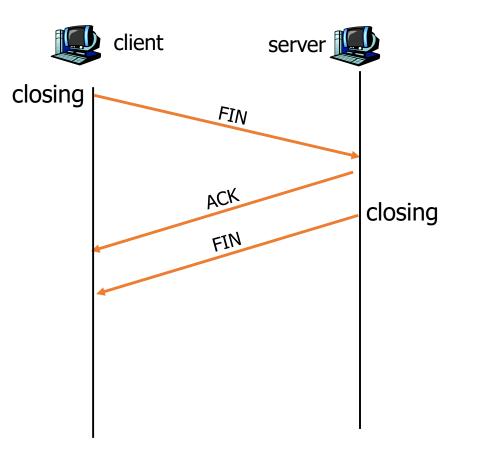


Closing a connection:


Client closes socket:
 clientSocket.close();

Step 1: Client sends TCP FIN control segment to server

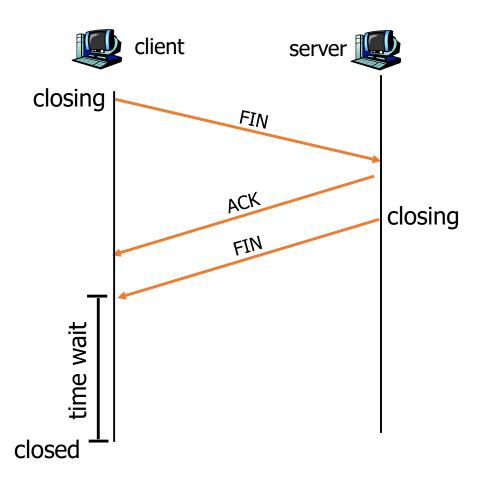
Step 2: Server receives FIN, replies with ACK. Closes connection, sends FIN.

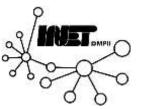


Step 3: Client receives FIN, replies with ACK.

- Enters "time wait" will respond with ACK to received FINs
- Step 4: Server, receives ACK. Connection closed.

Note: With small modification, can handle simultaneous FINs.

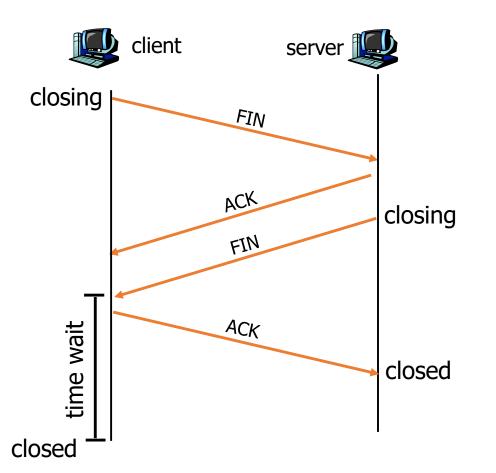




Step 3: Client receives FIN, replies with ACK.

- □Enters "time wait" will respond with ACK to received FINs
- <u>Step 4:</u> Server, receives ACK. Connection closed.

Note: With small modification, can handle simultaneous FINs.

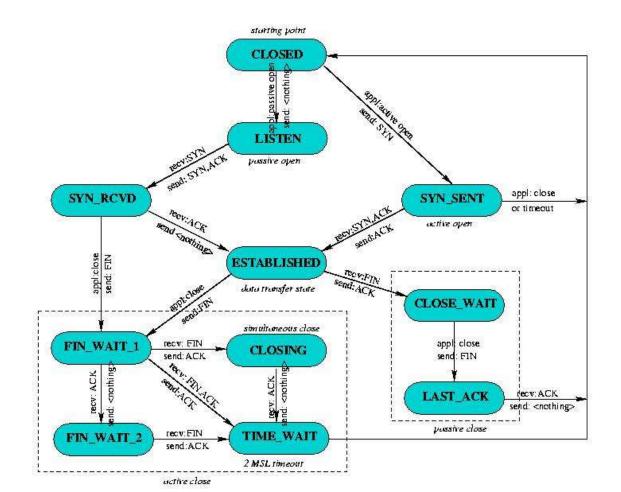


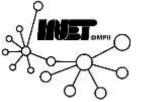

Step 3: Client receives FIN, replies with ACK.

Enters "time wait" – will respond with ACK to received FINs

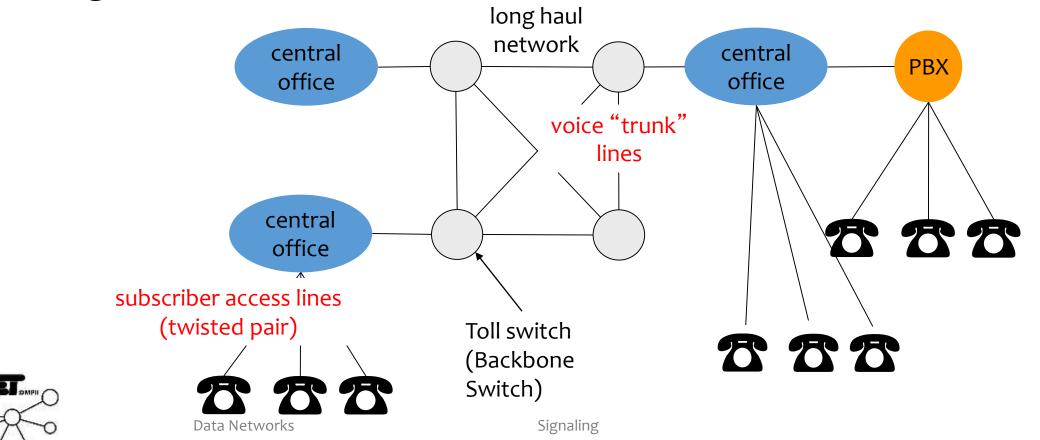
<u>Step 4:</u> Server, receives ACK. Connection closed.

Note: With small modification, can handle simultaneous FINs.



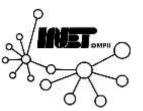


TCP state machine



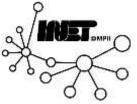
Telephone network

- Created 1876
- A global Infrastructure



connectionless (stateless) forwarding + by IP routers

best effort service no network signaling protocols in initial IP design


• Yet, new requirement: App. layer protocol, enable users to be reachable independent of the device and his location

- Yet, new requirement: App. layer protocol, enable users to be reachable independent of the device and his location
- SIP: Session Initiation Protocol [RFC 3261]
 - IETF protocol
 - All telephone calls and video conference calls take place over the Internet
 - People are identified by names/e-mail addresses, rather than phone #

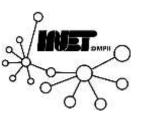
 Callee reachable, no matter where the callee roams, no matter what IP device the callee is currently using naling

Signaling

SIP Services

- Setting up a call
 - Provides mechanisms for caller to let callee know she wants to establish a call
 - Provides mechanisms so that caller and callee can agree on media type and encoding
 - Provides mechanisms to end call

- Determine current IP address of callee
 - Maps mnemonic identifier to current IP address
- Call management
 - Add new media streams during call
 - Change encoding during call
 - Invite others
 - Transfer and hold calls



SIP and IMS

• IMS – Internet Multimedia Subsystem

• IMS – Internet Multimedia Subsystem

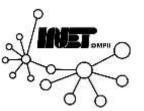
- IMS uses SIP in order to provide functionality equivalent to SS7 and more
- IMS is heavily used to provide VoIP services
 - E.g., VoIP for LTE

connectionless (stateless) forwarding + s by IP routers

best effort service

=

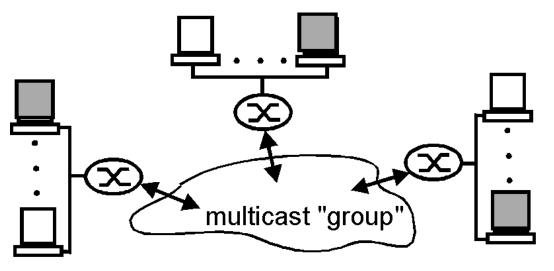
no network signaling protocols in initial IP design



connectionless (stateless) forwarding + by IP routers

best effort service no network signaling protocols in initial IP design

 Yet, new requirement: Reserve resources along end-to-end path (end system, routers) for QoS for multimedia applications

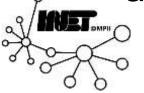




- Yet, new requirement: Reserve resources along end-to-end path (end system, routers) for QoS for multimedia applications
- RSVP: Resource Reservation Protocol [RFC 2205]
 - "... allows users to communicate requirements to network in robust and efficient way." i.e., signaling!
 - Earlier Internet Signaling protocol: ST-II [RFC 1819]
 - Designed with multicast in mind

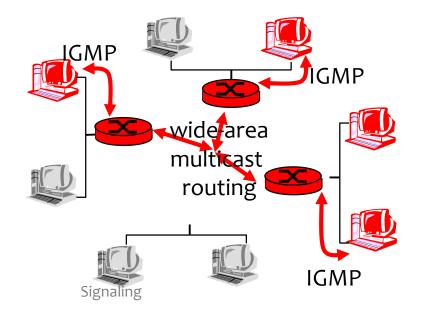
Internet multicast service model

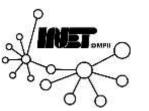
- Multicast group concept:
 - Hosts send IP datagram pkts to multicast group
 - Hosts that have "joined" that multicast group will receive pkts sent to that group
 - Routers forward multicast datagrams to hosts



Class D Internet addresses reserved for multicast:

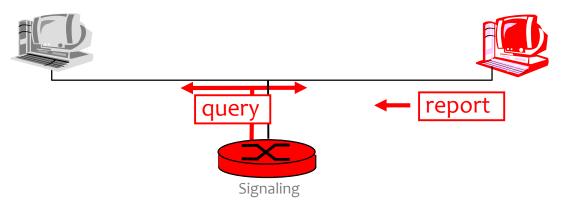
1110 Multicast Group ID


- Host group semantics:
 - Anyone can "join" (receive) multicast group
 - Anyone can send to multicast group
 - No network-layer identification to hosts of members
- Needs: Infrastructure to deliver mcast-addressed datagrams to all hosts that joined that multicast group



Joining a mcast group: Two-step process

- Local: Host informs local mcast router of desire to join group: IGMP (Internet Group Management Protocol)
- Wide area: Local router interacts with other routers to receive mcast datagram flow
 - Many protocol options (e.g., DVMRP, MOSPF, PIM)


IGMP: Internet Group Management Protocol

- Host: Sends IGMP report when application joins mcast group
 - IP_ADD_MEMBERSHIP socket option

Data Networks

- Host need not explicitly "unjoin" group when leaving
- Router: Sends IGMP query at regular intervals
 - Host belonging to a mcast group must reply to query

IGMP

IGMP version 1

- Router: Host Membership Query msg broadcast on LAN to all hosts (for all groups)
- Host: Host Membership Report msg to indicate group membership
 - Randomized delay before responding
 - Implicit leave via no reply to Query

• RFC 1112

IGMP

IGMP version 1

- Router: Host Membership Query msg broadcast on LAN to all hosts (for all groups)
- Host: Host Membership Report msg to indicate group membership
 - Randomized delay before responding
 - Implicit leave via no reply to Query
- RFC 1112

IGMP v2: Additions include

- Group-specific query
- Leave Group msg
 - Last host replying to Query can send explicit Leave Group msg
 - Router performs group-specific query to see if any hosts left in group
 - RFC 2236

IGMP v3: Internet draft

IPv6: ICMP replaces IGMP

Signaling